
Distributed Federated Service Chaining for Heterogeneous
Network Environments

Chen Chen
Loughborough University

Loughborough, UK
c.chen@lboro.ac.uk

Lars Nagel
Loughborough University

Loughborough, UK
l.nagel@lboro.ac.uk

Lin Cui
Jinan University
Guangzhou, China
tcuilin@jnu.edu.cn

Fung Po Tso
Loughborough University

Loughborough, UK
p.tso@lboro.ac.uk

ABSTRACT
Future networks are expected to support cross-domain, cost-aware
and fine-grained services in an efficient and flexible manner. Ser-
vice Function Chaining (SFC) has been introduced as a promising
approach to deliver these services. In the literature, centralized
resource orchestration is usually employed to process SFC requests
and manage computing and network resources. However, central-
ized approaches inhibit the scalability and domain autonomy in
multi-domain networks. They also neglect location and hardware
dependencies of service chains.

In this paper, we propose federated service chaining, a distributed
framework which orchestrates and maintains the SFC placement
while sharing a minimal amount of domain information and control.
We first formulate a deployment cost minimization problem as
an Integer Linear Programming (ILP) problem with fine-grained
constraints for location and hardware dependencies, which is NP-
hard. We then devise a Distributed Federated Service Chaining
placement approach (DFSC) using inter-domain paths and border
nodes information. Our extensive experiments demonstrate that
DFSC efficiently optimizes the deployment cost, supports domain
autonomy and enables faster decision-making. The results show
that DFSC finds solutionswithin a factor 1.15 of the optimal solution.
Compared to a centralized approach in the literature, DFSC reduces
the deployment cost by 12% while being one order of magnitude
faster.

CCS CONCEPTS
•Networks→ Cloud computing; • Computing methodologies
→ Distributed algorithms.

KEYWORDS
Multi-domain, Distributed orchestration, Affinity, Federated Service
Chaining
ACM Reference Format:
Chen Chen, Lars Nagel, Lin Cui, and Fung Po Tso. 2021. Distributed Feder-
ated Service Chaining for Heterogeneous Network Environments. In 2021
IEEE/ACM 14th International Conference on Utility and Cloud Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UCC’21, December 6–9, 2021, Leicester, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8564-0/21/12. . . $15.00
https://doi.org/10.1145/3468737.3494091

(UCC’21), December 6–9, 2021, Leicester, United Kingdom. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3468737.3494091

1 INTRODUCTION
In recent years, due to the rise of edge computing and Internet of
Things (IoTs), there is a significant increase of diverse applications
across heterogeneous network domains [5], [26]. In addition, these
applications are greatly dependent on computing and network
resources (e.g., CPU, memory, bandwidth) [23], [8], [14]. In practice,
Service Function Chaining (SFC) has been introduced as a promising
approach to deliver these complex end-to-end applications [15]. In
particular, the SFC deployment consumes computing and network
resources which are significantly associated with the revenue of
service providers.

In the meantime, network services are shifting from central-
ized clouds to distributed edge networks [7]. With more and more
edge service operators joining the market, the network is becom-
ing increasingly more fragmented across different administrative
domains. Towards this end, we envision that future network ser-
vices will span across cloud data centers, ISP and edge networks.
Figure 1 shows such an example. It exemplifies three administrative
domains with multiple clouds, ISP clouds and edge clouds. There
is a jaywalk detection SFC, that detects where people jaywalk, to
determine where to install crosswalks [3].

Realizing this application requires a high degree of resource shar-
ing and coordination across multiple administrative domains. How-
ever, existing SFC schemes are unable to support this architecture
because they either focus on a centralized resource orchestration
[12] [22] or only consider inter-cloud collaboration [25] [9], both
of which assume that all the topological and resource information
are known and that a centralized orchestrator has the control and
visibility of all the domains. On the contrary, network operators are
notoriously known for restricting the exchange of detailed network
information such as topologies, resources and services [11] [1] as
doing so could mean revealing their own business-sensitive compet-
ing advantages. As a result, a network operator prefers to manage
the administrative domain by using its own orchestrator. The dis-
tinct management policies and the lack of detailed intra-domain
information in domains of other operators exacerbate the difficul-
ties in multi-domain networks. Clearly, existing works would fail to
find hosting nodes and routing paths for the SFC request because
the topology and resource information are confidential in each
domain. Centralized and inter-cloud based solutions are also chal-
lenged by management complexity which is brought by the scale of
multi-domains. Orchestrating different domains such as public data
centers, edge clouds, customer premises is very complex for a cen-
tralized orchestrator due to the sheer volume of incoming requests
and computational resources. Consequently, the current centralized

https://doi.org/10.1145/3468737.3494091
https://doi.org/10.1145/3468737.3494091

UCC ’21, December 6–9, 2021, Leicester, United Kingdom Chen Chen, Lars Nagel, Lin Cui and Posco Tso

Edge cloud

Domain A
New York

 State

Domain B
Texas

Cloud
Traffic
counts

JaywalkerVehicles

ISP Cloud

Domain C
California

Orchestrator
B

Control
Channel

SFC
request

Object
tracker

Object
classifier

Orchestrator
A

Orchestrator
C

Edge cloud

 Cloud

ISP Cloud

Edge cloud

Smartphone

Figure 1: An example for SFC in 3-tier (cloud-ISP-edge) ar-
chitecture

approaches also lacks of scalability to support large-scale networks
with multiple domains.

Moreover, certain Network Functions (NFs) are location and
hardware dependent. For example, Figure 1 demonstrates that the
object tracker should be placed at Domain California if the jay-
walker behaviour in California is to be researched. Hence, there is
a need to specify the domain. The object classifier usually needs
GPUs to support complex Deep Neural Networks (DNNs) to rec-
ognize jaywalkers and cars. A cloud can be equipped with specific
hardware such as GPUs. For this reason, the object classifier should
be placed at a cloud rather than an edge cloud. Hence, there is also
a need to specify the tier. In this paper, we use the term ‘tier’ to
refer to the type of a cloud.

To overcome these challenges, we propose a federated SFC
scheme which will not only be scalable but also preserve auton-
omy and privacy of each participating domain. Our federated SFC
scheme supports these by distributing SFC decision making process
among relevant domains. Additionally, our federated scheme also
enables network operators to take full advantage of the underlying
infrastructure in different locations and domains. To the best of our
knowledge, this is the first paper to jointly consider the domain
autonomy, privacy and scalability in the SFC deployment problem.

Then, we formulate the SFC placement problem as an optimiza-
tion problem aiming to minimize the cost of computing resources
and traffic routing in monetary term. In addition, we provide con-
straints to specify the affinity correlation of an SFC request with
domains and tiers, respectively. We propose a Distributed Feder-
ated Service Chaining (DFSC) placement algorithm which embeds
a 𝑘-shortest path algorithm [24] in an aggregated graph. Our pro-
posed distributed approach merely requires the information of
inter-domain paths and border nodes which can be achieved by
Border Gateway Protocol (BGP). As illustrated in Figure 1, the SFC

request will be partitioned into sub-requests by the ingress orches-
trator (i.e., orchestrator C) based on the aggregated graph. Then, the
sub-requests are assigned to orchestrator A, B and C, respectively.
Thus, the orchestrator A, B and C will hanlde the sub-requests in
their own domains to preserve the autonomy and privacy. Also, the
decision-making time is significantly reduced because SFC requests
are simultaneously processed by multiple orchestrators.

We conducted extensive simulations in two topologies with dif-
ferent scales. We compare our results with the Gurobi solver [13] to
demonstrate the optimality gap and validate the proposed scheme.
We also implemented the SFCO-AMD (SFC orchestration across
multiple domains) approach which manages the multi-domain envi-
ronment with a centralized orchestrator [22]. We selected the SFCO-
AMD to demonstrate the efficiency of the proposed distributed
framework in terms of cost reduction and decision-making time.
The experiments demonstrate that the DFSC algorithm is within
a factor 1.15 of the optimal solution while being several orders of
magnitude faster than Gurobi. Compared to the SFCO-AMD ap-
proach, DFSC efficiently reduces the overall deployment cost by
12% and is at least one order of magnitude faster.

In short, our contributions are as follows.
• We formulate an Integer Linear Programming (ILP) problem,
which takes the location and hardware dependency into
account, to minimize the deployment cost.

• We propose a distributed framework which significantly
reduces decision-making time and improves the scalability
while using a minimal amount of information. This preserves
domain autonomy and privacy.

• We have conducted extensive simulations to evaluate DFSC
against the Gurobi solver and SFCO-AMD to demonstrate
the optimality gap and validate the proposed framework.

The rest of the paper is organized as follows. Section 2 summarizes
the main related works, Section 3 introduces the system model,
Section 4 proposes the optimization problem, Section 5 presents
the proposed DFSC algorithm, Section 6 evaluates the algorithm
by means of experiments, and, finally, conclusions are drawn and
future works are outlined in Section 7.

2 RELATEDWORK
Some previous research works focused on the SFC orchestration
problem by considering NF placement, traffic routing and NF chain-
ing in a multi-domain environment. Sun [22] has proposed the
SFCO-AMD approach by using a centralized approach. The key
idea is to partition the SFC requests by using the link status infor-
mation such as the minimum latency. Gouareb [12] considered a
multi-domain framework to minimize the overall latency which
is defined as queueing delay within the edge clouds and inter-
cloud links. Another interesting approach is proposed to solve the
problem of service chaining across multi-providers [9]. The author
formulated an objective function to minimize service cost and re-
source consumption. They modelled the problem by decomposing
it into two sub-problems which are named NF-partitioning problem
and NF-subgraph mapping problem. Moreover, they introduced a
new service model to simplify the specification of service chaining
requests. In order to solve multi-domain SFC problem, Bhamare
et al. [6] proposed an ILP problem aiming to minimize inter-cloud

Distributed Federated Service Chaining for Heterogeneous Network Environments UCC ’21, December 6–9, 2021, Leicester, United Kingdom

traffic and response time. Furthermore, they compared the results
with a simple greedy approach.

Most of the above literature requires a centralized orchestrator,
the global topology information or link status information. There
are also a few works employing a distributed approach. Flavio [10]
proposed the Necklace arichitecture to deploy SFC with conver-
gence and performance guarantees. Although Necklace provides
a fully distributed approach, it inevitably requires some global in-
formation such as the maximum utility on each single node. Also,
sharing the same host node among multiple SFCs leads to a slower
convergence time which negatively impact the decision-making
time. Kiril [4] proposed an approach to federate multiple domains
by employing distributed ledger technologies. However, it takes
around 5 seconds for single service federation without considering
the deployment time. In [1], Ahmed proposed DistNSE, a distributed
framework for service chain embedding across multi-domains. Dis-
tNSE employs a bidding mechanism to partition SFC. However,
DistNSE chooses to enumerate all the paths between the peering
nodes in each domain to find optimal mapping solution. There-
fore, this approach requires excessive time to make decision which
significantly influences the scalability.

Unlike aforementioned works, the design of DFSC merely re-
quires the inter-domain paths and border nodes information to pre-
serve the domain autonomy. The proposed distributed algorithm
provides fast runtime and scalability for large-scale network.

3 SYSTEM MODEL
3.1 Physical Network
The network is modelled as a graph G = (V, E), where V =

{𝑣1, 𝑣2, ..., 𝑣𝑉 } is the set of all nodes and E = {𝑒1, 𝑒2, ..., 𝑒𝐸 } is the
set of all edges or network links. We use M = {𝑚1,𝑚2, ...,𝑚𝑀 } to
denote the set of all clouds in the network. In this work, every node
inV is regarded as a cloud. A cloud can host NF instances on their
Virtual Machines (VMs), containers or physical hosts. For a cloud𝑚,
there are several fields {𝑚.𝑐𝑝𝑢,𝑚.𝑚𝑒𝑚,𝑚.𝑑𝑜𝑚𝑎𝑖𝑛,𝑚.𝑡𝑖𝑒𝑟 },𝑚.𝑐𝑝𝑢

and 𝑚.𝑚𝑒𝑚 denote the maximum CPU and memory capacity of
cloud𝑚. We use𝑚.𝑑𝑜𝑚𝑎𝑖𝑛 to denote the domain id of the cloud,
and 𝑚.𝑡𝑖𝑒𝑟 to denote the tier of the cloud (i.e., tier 1, tier 2 and
tier 3). Each link in E has a capacity of network bandwidth. By
P = {𝑝1, 𝑝2, ..., 𝑝𝑃 } we denote all paths in the network.

3.2 Service Function Chaining Model
We use R to denote the set of all SFC requests. Each request is
defined by an 8-tuple 𝑟 =

{
𝑠𝑟𝑐, 𝑑𝑠𝑡,N ,Ψ𝑏𝑤 ,Ψ𝑡𝑟 , 𝑙𝑡𝑑 ,𝑇𝑡 , 𝐷𝑑

}
where

𝑠𝑟𝑐 and 𝑑𝑠𝑡 are the ingress and egress node andN = {𝑛1, 𝑛2, ..., 𝑛𝑁 }
is the set of NF in predefined order. Every NF 𝑛 has several proper-
ties {𝑡𝑦𝑝𝑒, 𝑐𝑝𝑢,𝑚𝑒𝑚}. The property 𝑛.𝑡𝑦𝑝𝑒 represents the NF type
such as load balancer or firewall. 𝑛.𝑐𝑝𝑢 and 𝑛.𝑚𝑒𝑚 denote the re-
quired CPU and memory resources, respectively. Ψ𝑏𝑤 denotes the
required bandwidth, Ψ𝑡𝑟 the required traffic rate and 𝑙𝑡𝑑 the maxi-
mum tolerated delay. 𝐷𝑑 and𝑇𝑡 are the domain and tier constraints,
respectively.

3.3 SFC Request Affinity
As aforementioned, network operators could have demands for
specific constraints on domain and tier due to their operational
concerns such as specific hardware or location. Understanding the
complexity of such fine-grained constraints is vitally important
to influence the future development of SFC services. We define
domain and tier constraints by employing the idea of affinity or
anti-affinity rules as follows.

𝑇𝑡 =



1 indicates SFC request
to be deployed at tier t.

−1 prevents SFC request to be
deployed at tier t.

0 otherwise.

(1)

𝐷𝑑 =



1 indicates SFC request to be
deployed at domain d.

−1 prevents SFC request to be
deployed at domain d.

0 otherwise.

(2)

These constraints can be easily adapted to include different gran-
ularities such as a set of SFCs, one SFC or one NF. In this paper, we
only discuss constraints in the SFC granularity.

4 PROBLEM DESCRIPTION
In geo-distributed multi-domain networks, service providers search
for solutions to deploy SFC requests under constraints. The selec-
tion of the clouds and the routing path are, for example, subject to
resource availability, resource costs and a bound on the maximum
tolerated delay. The problem examined in this paper is to find a
placement that minimizes the overall deployment cost while meet-
ing the constraints. This problem is formulated as an ILP problem
in this section. All symbols and variables are listed in Table 1.

4.1 Problem Statement
The provisioning of an SFC request comes with a monetary cost.
When running a chain over geographically distributed clouds, re-
source costs are caused by consuming computing resources in
clouds, and traffic routing costs are incurred by the usage of band-
width while steering traffic through the chain.

Given a set of SFC requests, our goal is to minimize the overall
deployment cost of the request. The deployment cost 𝐶 of one SFC
request consists of two components: the resource cost 𝐶𝑅 and the
traffic routing cost 𝐶𝑇 .

𝐶 = 𝐶𝑅 +𝐶𝑇 (3)
Instead of computing the deployment cost for a given time interval,
we study the deployment cost per second.
4.1.1 Resource Cost.

Implementing an SFC request costs computing resources. We
consider CPU and memory and define the resource cost 𝐶𝑅 as

𝐶𝑅 =
∑︁
𝑛𝑖 ∈N

∑︁
𝑚∈M

(𝛽𝑐𝑝𝑢
𝑑

𝑐
𝑐𝑝𝑢
𝑛𝑖 𝑦

𝑛𝑖
𝑚 + 𝛽𝑚𝑒𝑚

𝑑
𝑐𝑚𝑒𝑚
𝑛𝑖

𝑦
𝑛𝑖
𝑚) (4)

UCC ’21, December 6–9, 2021, Leicester, United Kingdom Chen Chen, Lars Nagel, Lin Cui and Posco Tso

where 𝛽𝑐𝑝𝑢
𝑑

and 𝛽𝑚𝑒𝑚
𝑑

are the costs of using one unit of CPU or
memory in domain 𝑑 , respectively. 𝑐𝑐𝑝𝑢𝑛𝑖 and 𝑐𝑚𝑒𝑚

𝑛𝑖
are the amount

of CPU and memory required by NF 𝑛𝑖 . Finally, 𝑦𝑛𝑖𝑚 is an indicator
variable which is 1 if NF 𝑛𝑖 is deployed on cloud𝑚, and 0 otherwise.
4.1.2 Traffic Routing Cost.

When network traffic is routed through a chain across multiple
domains, routing costs can incur for the network links usage [27]
[20]. The cost is caused by the total bandwidth consumed on virtual
links that are deployed on physical links. Since this cost is deter-
mined by the routing between source and target cloud, we use a
unified cost parameter 𝑐𝑝 to denote the overall traffic routing cost
of one unit of traffic when using path 𝑝 . The traffic routing cost𝐶𝑇
of one SFC request is defined as follows.

𝐶𝑇 =
∑︁
𝑝∈P

𝑐𝑝Ψ
𝑡𝑟𝑦

𝑠𝑟𝑐,𝑛1
𝑝 +

∑︁
𝑝∈P

∑︁
𝑛𝑖 ,𝑛 𝑗 ∈N

𝑐𝑝Ψ
𝑡𝑟𝑦

𝑛𝑖 ,𝑛 𝑗

𝑝

+
∑︁
𝑝∈P

𝑐𝑝Ψ
𝑡𝑟𝑦

𝑛𝑁 ,𝑑𝑠𝑡
𝑝 .

(5)

Ψ𝑡𝑟 denotes the traffic rate of the request. 𝑐𝑝 is the unified traffic
routing cost parameter which is proportional to the geographical
distance. 𝑦𝑛𝑖 ,𝑛 𝑗

𝑝 is the indicator variable which is 1 if path 𝑝 is used
between NF 𝑛𝑖 and 𝑛 𝑗 , and 0 otherwise. Hence, 𝑦𝑠𝑟𝑐,𝑛1

𝑝 indicates
whether path 𝑝 is used to connect the ingress node with the first
NF, and 𝑦𝑛𝑁 ,𝑑𝑠𝑡

𝑝 indicates whether path 𝑝 is used to connect the last
NF in the request with the egress node.

4.2 SFC Orchestration Problem In
Heterogeneous Multi-domain Networks

In this paper, we consider the SFC orchestration as an online prob-
lem which means that the SFC requests are processed one by one.

Problem 1. Given the domain and tier constraints, the amount of
resources available at each cloud, the amount of CPU and memory
required by the NF components, the problem is to find the placement
for the NFs and the subsequent traffic route that minimizes the de-
ployment cost.

minimize 𝐶 = 𝐶𝑅 +𝐶𝑇 (6)
The problem is subject to a number of constraints.
The CPU and memory requirements must not exceed the re-

maining CPU capacity 𝐶𝑐𝑝𝑢
𝑚 and memory capacity 𝐶𝑚𝑒𝑚

𝑚 on cloud
𝑚. ∑︁

𝑛𝑖 ∈N
𝑐
𝑐𝑝𝑢
𝑛𝑖 𝑦

𝑛𝑖
𝑚 ≤ 𝐶

𝑐𝑝𝑢
𝑚 , ∀𝑚 ∈ M (7)∑︁

𝑛𝑖 ∈N
𝑐𝑚𝑒𝑚
𝑛𝑖

𝑦
𝑛𝑖
𝑚 ≤ 𝐶𝑚𝑒𝑚

𝑚 , ∀𝑚 ∈ M (8)

The required bandwidth amount must not exceed the remaining
bandwidth capacity 𝐶𝑏𝑤

𝑝 on path 𝑝 .∑︁
𝑝∈P

∑︁
𝑛𝑖 ,𝑛 𝑗 ∈N

Ψ𝑏𝑤𝑦
𝑛𝑖 ,𝑛 𝑗

𝑝 ≤ 𝐶𝑏𝑤
𝑝 (9)

Also, each NF in the request can only be assigned once.∑︁
𝑚∈M

𝑦
𝑛𝑖
𝑚 ≤ 1 (10)

Table 1: Symbols and Variables

Symbols and Variables Description

Physical Network
G = (V, E) Physical network graph.
R = {𝑟1, 𝑟2, ..., 𝑟𝑅 } All SFC requests.
M = {𝑚1,𝑚2, ...,𝑚𝑀 } All cloud data centers.
V = {𝑣1, 𝑣2, ..., 𝑣𝑉 } All nodes in the network.
E = {𝑒1, 𝑒2, ..., 𝑒𝐸 } All physical links in the network.
P = {𝑝1, 𝑝2, ..., 𝑝𝑃 } All paths in the network.
𝐶
𝑐𝑝𝑢
𝑚 ,𝐶𝑚𝑒𝑚

𝑚 Remaining CPU and memory
capacity in cloud𝑚.

𝐶𝑏𝑤
𝑝 Remaining bandwidth capacity

on path 𝑝 .

SFC Graph
𝑠𝑟𝑐 Ingress point of the SFC request.
𝑑𝑠𝑡 Egress point of the SFC request.
N = {𝑛1, 𝑛2, ..., 𝑛𝑁 } All NFs in the SFC request.
𝑚.𝑐𝑝𝑢,𝑚.𝑚𝑒𝑚 Total capacity of CPU and

memory on cloud𝑚.
𝑐
𝑐𝑝𝑢
𝑛𝑖

, 𝑐𝑚𝑒𝑚
𝑛𝑖

Amount of CPU and memory
required by NF 𝑛𝑖 .

Ψ𝑏𝑤 Required bandwidth.
Ψ𝑡𝑟 Required traffic rate.
𝑙𝑡𝑑 Maximum tolerated delay.
𝑙𝑑 End to end delay of given SFC.
𝐷𝑑 Domain constraint.
𝑇𝑡 Tier constraint.

Parameters
𝛽
𝑐𝑝𝑢

𝑑
Resource cost of one unit of CPU
in domain 𝑑 .

𝛽𝑚𝑒𝑚
𝑑

Resource cost of one unit of
memory in domain 𝑑 .

𝑐𝑝 Traffic routing cost parameter
of path 𝑝 .

Binary Variables
𝑦
𝑛𝑖
𝑚 Indicator if NF 𝑛𝑖 is hosted on

cloud𝑚.
𝑦
𝑛𝑖 ,𝑛 𝑗
𝑝 Indicator if traffic from NF 𝑛𝑖

to 𝑛 𝑗 is routed through path 𝑝 .

The end to end delay of the path for SFC request must meet the
constraint of the maximum tolerated delay.

𝑙𝑑 ≤ 𝑙𝑡𝑑 (11)
where 𝑙𝑑 denote the end to end delay of the request.

Finally, we phrase the domain and tier constraints for an SFC. If
the SFC request includes a tier affinity constraint specifying tier 𝑡 ,
the request must be deployed at tier 𝑡 .

if 𝑇𝑡 = 1,
∑︁

𝑚∈M𝑡

𝑦
𝑛𝑖
𝑚 = 1, ∀𝑛 ∈ N (12)

where M𝑡 is the set of clouds that belongs to tier 𝑡 .
If the SFC request includes a tier anti-affinity constraint specify-

ing tier 𝑡 , the request must not be deployed at tier 𝑡 .

if 𝑇𝑡 = −1,
∑︁

𝑚∈M𝑡

𝑦
𝑛𝑖
𝑚 = 0, ∀𝑛 ∈ N (13)

Distributed Federated Service Chaining for Heterogeneous Network Environments UCC ’21, December 6–9, 2021, Leicester, United Kingdom

Request

Ingress orchestrator creates the aggregated graph

Ingress orchestrator finds k-shortest paths

Ingress orchestrator partitions the request

Ingress orchestrator assigns sub-requests
to several peer orchestrators

Peer orchestrators place
sub-requests successfully

Try next
shortest path

Peer orchestrators return results to ingress orchestrator

End

Yes

No

Figure 2: The workflow of DFSC

If the SFC request includes a domain affinity constraint specify-
ing domain 𝑑 , the request must be deployed at domain 𝑑 .

if 𝐷𝑑 = 1,
∑︁

𝑚∈M𝑑

𝑦
𝑛𝑖
𝑚 = 1, ∀𝑛 ∈ N (14)

where M𝑑 is the set of clouds that belongs to domain 𝑑 .
If the SFC request includes a domain anti-affinity constraint

specifying domain 𝑑 , the request must not be deployed at domain
𝑑 .

if 𝐷𝑑 = −1,
∑︁

𝑚∈M𝑑

𝑦
𝑛𝑖
𝑚 = 0, ∀𝑛 ∈ N (15)

This cost minimization problem is NP-hard because the classical
minimum knapsack problem (MKP), which is known to be NP-hard,
can be reduced to it [27].

5 DISTRIBUTED FEDERATED SERVICE
CHAINING

In this section, we elaborate the distributed federated service chain-
ing algorithm. The proposed algorithm is designed to find solutions
for Equation 6. The aim of this algorithm is to distribute the decision-
making process to multiple domain orchestrators and preserve the
autonomy of domains. A global orchestrator is not required. Thus,
the current network configuration will not be changed.

Figure 2 shows the workflow of our proposed algorithm. In this
work, we assume that each domain has a domain orchestrator which

Dst

Domain 1

Domain 2
Domain 3

Domain 4

Src

(a) The physcial network

Dst

Domain 1

Domain 2
Domain 3

Domain 4

Src

(b) The aggregated graph

Figure 3: Topology aggregation

is aware of all the intra-domain information but has only limited
information about other domains (e.g., the inter-domain link to
other domains). When an SFC request arrives at a domain, the
ingress orchestrator partitions the request into sub-requests. In the
example shown in Figure 1, the chain of the SFC request starts in
Domain C and ends in Domain A. Hence, Orchestrator C is the
ingress orchestrator for this request. Subsequently, Orchestrator A
and B are referred as peer orchestrators.

The ingress orchestrator builds an aggregated graph including
inter-domain links and aggregated nodes. It employs the 𝑘-shortest
path algorithm [24] in the aggregated graph and decides how to
assign the NFs to the different domains. The 𝑘-shortest path al-
gorithm provides several candidate paths which helps to avoid
resource bottlenecks at the cost of only a slight increase in runtime.
Subsequently, the decision is sent to peer orchestrators. Finally, each
peer orchestrator finds a solution within their own domain and
sends deployment results back to the ingress orchestrator. Details
are provided in the following subsections.

5.1 Constructing Aggregated Graph
Privacy is always a paramount concern in multi-domain networks
[16]. Hence, we assume that only border nodes (nodes connected to
a inter-domain link) are visible to other peer orchestrators. This can
be achieved by the Border Gateway Protocol [1]. In Figure 3(a), grey
nodes represent the border nodes, and the link that traverses two
domains is an inter-domain link. Thus, the intra-domain network
connectivities and topologies are regarded as confidential informa-
tion of each domain. In this setup, domain internal information are
well preserved.

The aggregated graph consists of inter-domain links, border
nodes and logical intra-domain links. As shown in Figure 3(b), the
grey nodes represent border nodes. Then, the solid and dotted lines
denote the inter-domain and logical links, respectively. The white
nodes represent the ingress and egress node of the SFC request.
The aggregated graph is derived from the physical network by
employing Full-Mesh aggregation [18]. The approach is to only
keep the border nodes and remove other nodes. Then, each pair
of border nodes in the same domain is connected by a logical link.
The latency 𝑙𝑑 and traffic routing cost parameter 𝑐𝑝 of logical link
are temporarily set to 0 in the aggregation phase because such
information is regarded as confidential. In the aggregation graph,
there are enough information for the ingress orchestrator to make
first-phase decision.

UCC ’21, December 6–9, 2021, Leicester, United Kingdom Chen Chen, Lars Nagel, Lin Cui and Posco Tso

5.2 Distributed Federated Service Chain
Placement

In this subsection we explain how to find solutions with the dis-
tributed framework. The pseudocode of DSFC algorithm is shown
in Algorithm 1. First, the aggregated graph is constructed by the
ingress orchestrator when the SFC request arrives. Then, the ingress
orchestrator employs the 𝑘-shortest path algorithm to find 𝑘 candi-
date paths from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 based on traffic routing cost [24]. Also,
the ingress orchestrator assigns NFs to domains on the candidate
path according to the resource cost parameter 𝛽𝑐𝑝𝑢

𝑑
and 𝛽𝑚𝑒𝑚

𝑑
. Fi-

nally, each peer orchestrator invokes Algorithm 2 which strives to
find a solution for intra-domain placement. If the first intra-domain
placement fails, the algorithm will try to deploy the request on the
second candidate path until all candidate paths fail.

Algorithm 1 Distributed Federated Service Chaining Placement

1: Input: SFC request 𝑟 , resource cost parameter 𝛽𝑐𝑝𝑢
𝑑

and 𝛽𝑚𝑒𝑚
𝑑

of each domain, traffic routing cost parameter 𝑐𝑝 .
2: Output: Routing path, hosted nodes, deployment cost.
3: Construct aggregated graph G𝑎 = (V𝑎, E𝑎);
4: Find 𝑘-shortest path P𝑘 = 𝑝1, 𝑝2, ..., 𝑝𝑘 according to traffic

routing cost;
5: while 𝑝 ∈ 𝑃𝑘 ≠ ∅ do
6: if Ψ𝑏𝑤 > 𝐶𝑏𝑤

𝑝 then
7: continue;
8: end if
9: Sort the set of domains on the path 𝑝 based on 𝛽

𝑐𝑝𝑢

𝑑
and

𝛽𝑚𝑒𝑚
𝑑

;
10: for 𝑛 ∈ N do
11: Find the available domain 𝑑 with lowest
12: resource cost;
13: Check the domain constraint;
14: Assign the NF to 𝑑 ;
15: end for
16: for each domain 𝑑 on path 𝑝 do
17: Call Algorithm 2 on peer orchestrators;
18: if Algorithm 2 fails then break;
19: end if
20: end for
21: if All NF are assigned then
22: return Routing path, hosted nodes, the
23: deployment cost;
24: end if
25: end while
26: return Deployment failure.

The DFSC algorithm is initialized in line 1 in Algorithm 1. Then,
line 3-15 and line 21-26 are executed on the ingress orchestrator
while line 16-20 is carried out on peer orchestrators. Line 3 is to
construct the aggregated graph. In line 4, the 𝑘-shortest path al-
gorithm calculates the candidate paths. In line 6-8, the bandwidth
requirement is checked. In line 9, the ingress orchestrator sorts
all related domains. For simplicity, we take the sum of 𝛽𝑐𝑝𝑢

𝑑
and

𝛽𝑚𝑒𝑚
𝑑

as the sorting criteria. Then, the ingress orchestrator iterates
over all domains which have enough resource capacity to host the

NF. Next, a feasible domain with lowest resource cost is selected
and the corresponding NF is assigned to the domain. In line 17,
Algorithm 2 is called. Finally, the ingress orchestrator checks the
deployment and return the result in line 21-26.

Algorithm 2 describes the intra-domain deployment which is
parallelly executed on each peer orchestrator. In line 3, 𝑘-shortest
path algorithm is employed to find candidate paths within a single
domain. Subsequently, in line 4-11 we search for the first available
cloud to host the NF.When all assigned NFs in this domain is hosted,
the peer orchestrator sends the result to the ingress orchestrator.
If all candidate paths are iterated, but some NFs are not able to be
hosted. Then, the intra-domain deployment fails and sends message
to the ingress orchestrator.

Algorithm 2 Intra-domain Deployment

1: Input: Assigned NFs N𝑑 for domain 𝑑 , single domain graph
G𝑑 = (V𝑑 , E𝑑).

2: Output: Routing path 𝑝𝑑 in G𝑑 , a set of nodes Vℎ that host
NFs.

3: Find 𝑘-shortest paths P𝑘 = 𝑝1, 𝑝2, ..., 𝑝𝑘 according to traffic
routing cost in G𝑑 ;

4: while 𝑝 ∈ 𝑃𝑘 ≠ ∅ do
5: if Ψ𝑏𝑤 > 𝐶𝑏𝑤

𝑝 then
6: continue;
7: end if
8: for Each 𝑛𝑖 in N𝑑 do
9: Find the node 𝑣 on 𝑝 with enough computing resources;
10: Check the tier constraint;
11: Assign the NF to 𝑣 ;
12: end for
13: if all NFs are assigned then
14: return 𝑝𝑑 and Vℎ ;
15: end if
16: end while
17: return Intra-domain deployment failure.

6 EVALUATION
6.1 Evaluation environment
We have implemented DFSC and SFCO-AMD in Network Simulator
3 (NS3) and conducted our experiments on a server with Intel(R)
Core(TM) i5-8265 CPU 1.60 GHz and 8 GB RAM. Each SFC request
contains varying number of Network Functions randomly chosen
from 5 extensively studied Network Functions (i.e., Firewall, Proxy,
NAT, IDS and Load Balancer). The numbers of cores for one cloud,
ISP cloud and edge cloud are 1000, 500, and 200, respectively. The
memory capacities for one cloud, ISP cloud and edge cloud are
1000GB, 500GB and 200GB, respectively. The bandwidth capacities
for inter-domain and intra-domain links are set to 1000Mbps and
500Mbps, respectively. The propagation delay is randomly selected
between 2ms and 10ms for every link. In the simulation, the ingress
nodes, the egress nodes and NFs in SFC requests are all randomly
selected. For each NF, the number of CPU cores is randomly selected
from (1,10). The memory requirement is set as numbers distributed
randomly between (1,20) GB. Then, we set up some simulation

Distributed Federated Service Chaining for Heterogeneous Network Environments UCC ’21, December 6–9, 2021, Leicester, United Kingdom

(a) Topolgy Agis (b) Topology Internode

Figure 4: Topology in the simulation

parameters according to some similar papers [19], [21]. The number
of NFs in the chain are set to 3. The traffic rate requirement is set
between 100kbps and 500kbps. Also, the domain and tier constraints
are randomly created. The value 𝑘 for 𝑘-shortest path is empirically
selected as 8. The reason behind this setup is that the acceptance
does not significantly increase when the value of 𝑘 is greater than
8.

To benchmark the performance of DFSC with the optimal so-
lution, we have used an ILP solver Gurobi to obtain the offline
optimum of the cost minimization problem by solving Equation 6.

In addition, we have also compared the performance of DFSC
with SFCO-AMD in various topologies. First, the SFCO-AMD ap-
proach employs a centralized orchestrator to averagely partition
SFC requests into several sub-requests. Then, each sub-request is
deployed within a single domain. This algorithm is implemented
in the experiment to compare with DFSC algorithm. We adapted
it to the proposed network architecture by introducing affinity-
constraints. Finally, we calculated the deployment cost from the
result of SFCO-AMD approach.

The cost settings are randomly selected from a price ranges
set around Amazon instance prices [2]. The cost for one CPU per
second ranges from $0.001 to $0.005. The cost for one GB of memory
per second ranges from $0.001 to $0.004. The cost for sending
one Mbit over one link ranges from $0.02 to $0.05. Moreover, the
maximum tolerated end to end delay is randomly selected between
50 ms and 100 ms.

6.2 Evaluation results
6.2.1 Performance Comparison Between Gurobi and heuristics.
In this subsection, we compared the performance of DFSC, SFCO-
AMD and the ILP solver to study the optimality gap. The network
topology is a US backbone network named Agis from the Internet
Topology Zoo [17], as shown in Figure 4(a). The topology consists
of 25 nodes and 30 links. We divided the nodes into 6 domains
based on geo-distance. Then we randomly created different tiers
for nodes. In order to evaluate the performance of Algorithm 1, we
compared it with the optimal solution from Gurobi. Specifically,
given a SFC request, the solver searches for hosting clouds and
traffic routing paths that minimize the cost in Equation 6.

The cost raio is the ratio of cost achieved by heuristics (DFSC and
SFCO-AMD) to that achieved by the offline minimum. Figure 5(a)
and 5(b) shows that the DFSC algorithm stays within 1.1 times to the
optimal solution in terms of CPU cost and memory cost. Whereas,

(a) CPU cost ratio (b) Memory cost ratio

(c) Traffic routing cost ratio (d) Total cost ratio

Figure 5: Number of requests vs. cost ratio in topology Agis

the SFCO-AMD approach only stays within 1.6 times to the optimal.
From Figure 5(c) it is apparent that the DFSC is outperformed by 20%
comparing with SFCO-AMD approach. This is because, DFSC needs
to make trade-off between computing resource cost and routing
cost so as to minimize the overall cost. Also, SFCO-AMD performs
better than the Gurobi solver in terms of traffic routing cost, because
Gurobi only aims to find the optimum of overall deployment cost.
Finally, in Figure 5(d) the overall deployment cost of DFSC varies
between 1.05 and 1.15 times to the optimum. However, the SFCO-
AMD approach varies between 1.1 and 1.3 times to the optimum.
Hence, the DFSC approach performs better in terms of overall
deployment cost. Therefore, the DFSC approach can effectively find
a near-optimal solution.

Table 2: Decision Making Time

Number of DFSC SFCO-AMD Gurobi
requests

3 0.6s 26.8s 201s
6 1.49s 36.9s 505s
9 3.6s 71.7s 903.2s
12 3.76s 85s 1441.3s
15 5.44s 109.9s 1978.8s
18 5.75s 127s 2958.6s
21 6.99s 157.1s 3783.2s
24 9.76s 170.91s 4857.8s
27 9.74s 177.1s 4192s
30 11.3s 221.9s 5673.9s

UCC ’21, December 6–9, 2021, Leicester, United Kingdom Chen Chen, Lars Nagel, Lin Cui and Posco Tso

Figure 6: The DFSC/SFCO-AMD cost ratio in topology Intern-
ode

After that, Table 2 shows the average execution times of DFSC,
SFCO-AMD and Gurobi. The execution time is measured by record-
ing the running time of the algorithm. The DFSC algorithm provides
solutions that are 1.15 times within the optimum and the execution
time is several order of magnitude faster than Gurobi. Moreover,
DFSC is at least one order of magnitude faster than SFCO-AMD.
6.2.2 Evaluation of DFSC and SFCO-AMD approach.
In this subsection, we compared the performance of DFSC ap-
proach and the SFCO-AMD approach. The SFCO-AMD approach is
regarded as baseline. Since the integer programming solver has diffi-
culties to identify feasible solutions in a reasonable amount of time,
we did not implement Gurobi for the Internode topology in this sub-
section. Figure 6 illustrates the cost ratio of CPU cost, memory cost,
traffic routing cost and deployment cost in the Topology Internode
with 66 nodes and 75 links. The topology is illustrated in Figure 4(b)
and divided into 9 domains. Each domain includes several nodes.
Also, the number of requests increases from 10 to 100. Then, we cal-
culated the average cost per request and the acceptance rate. From
the Figure 6, we observed that the DFSC approach outperforms the
SFCO-AMD approach by 12% in terms of total deployment cost.
Also, the DFSC approach reduces the memory cost up to 26%. How-
ever, the SFCO-AMD approach outperforms the DFSC approach by
11 % in terms of traffic routing cost. This is because, DFSC needs to
make trade-off between traffic routing cost and computing resource
cost so as to minimize the overall cost. Since the DFSC algorithm
always outperforms the SFCO-AMD approach in deployment cost,
the effectiveness of our DFSC distributed approach is proved.

Then, we continued to investigate the decision-making time of
both algorithms. We conducted the experiment in Internode topol-
ogy with different numbers of requests. The result is depicted in
Figure 7(a). As the number of SFC requests increases, the decision-
making time for both algorithm rises. It is apparent that the DFSC
algorithm performs better in each case. The decision-making time
of the DFSC algorithm increases slowly while it rapidly grows in
the case of SFCO-AMD. This is because the decision of DFSC is
supported by several parallel orchestrators which significantly re-
duces the workload for each orchestrator and provides efficient
scalability. Moreover, the DFSC algorithm employs 𝑘-shortest path

(a) Decision-making time (b) Acceptance rate

Figure 7: The comparison of decision-making time and ac-
ceptance rate

(a) CDF of deployment cost (b) CDF of end to end delay

Figure 8: CDF of deployment cost and delay

algorithm which consumes much less time than searching all candi-
date paths in SFCO-AMD approach. Then, Figure 7(b) demonstrates
the acceptance rate over distinct number of requests. As the num-
ber of requests increases, the acceptance rate falls slightly in both
cases. This is because, resource bottlenecks emerge and prevent
SFC requests to be deployed. However, the DFSC approach still
outperforms the SFCO-AMD approach by 12% in average.

Figure 8(a) shows the percentage of requests deployed as a func-
tion of the deployment cost. While SFCO-AMD deploys only 60%
of the SFC requests within $0.11, DFSC deploys 80% of the requests.
Finally, Figure 8(b) shows the CDF of the end to end delay. We dy-
namically routed traffic through SFC when one request is deployed.
Then, the end to end delay of each SFC is dynamically measured by
sending one packet from ingress to egress node. The SFCO-AMD
algorithm outperforms the DFSC approach, where 98% of SFC re-
quests experience less than 35 ms delay. However, only 87% SFC
requests of the DFSC algorithm got less than 35 ms delay. There
are two reasons for this finding. Since the DFSC approach achieved
higher acceptance rate, more traffic is introduced in the network
which could cause higher delay. Second, the DFSC approach could
select a longer routing path to reduce the overall cost.
6.2.3 Acceptance rate over k value.
As shown in Table 3, we investigated the relationship between
acceptance rate and the 𝑘 value of the 𝑘-shortest path algorithm
in Algorithm 1. The 𝑘 value specifies how many candidate paths
the 𝑘-shortest path algorithm returns. To clearly demonstrate the
performance change, we reduced the numbers of CPU cores to 100,
50 and 20, respectively. Then we reduced the memory capacity of

Distributed Federated Service Chaining for Heterogeneous Network Environments UCC ’21, December 6–9, 2021, Leicester, United Kingdom

Table 3: DFSC performance under different 𝑘 value

Value of 𝑘 Acceptance rate Decision-making
time

1 73% 17.0s
2 74% 17.6s
3 75% 18.3s
4 75% 19.1s
5 75% 20.4s
6 78% 21.1s
7 78% 21.9s
8 79% 21.5s

different tiers to 100GB, 50GB and 20GB, respectively. The band-
width capacity for inter and intra-domain links shrank to 100Mbps
and 50Mbps. The experiment was still executed in topology Intern-
ode. We conducted 8 experiments in which 𝑘 increases from 1 to
8 with step size 1. Each time 100 SFC requests are delivered to the
network.

As shown in Table 3, when 𝑘 value increases from 1 to 8, the
acceptance rate increases from approximately 73% to 79%. This is
because, higher𝑘 value indicates more candidate paths for the DFSC
algorithm which is used to search for less used links and nodes to
accommodate SFC requests. Therefore, the orchestrator is more
likely to place the request and leverage the acceptance rate. Also,
Table 3 demonstrates the execution time under different number
of value 𝑘 . We can see that the execution time increases slightly
when the value of 𝑘 increases. This is because, the 𝑘-shortest path
algorithm spends more time to search for candidate paths.

7 CONCLUSION
In this paper, we formulated a cost minimization problem for de-
ploying service function chains in multi-domain networks under
affinity constraints. We proposed DFSC, a distributed and scalable
scheme to solve this problem. DFSC preserves the autonomy and
privacy of each domain by using a minimal amount of network
information. Scalability and decision-making time are improved by
using a distributed algorithm. The inclusion of affinity constraints
for domains and tiers allows to respect potential location and hard-
ware dependencies of service functions.

Our extensive experiments demonstrate that DFSC reduces the
deployment cost by 12%while the decision-making time is one order
of magnitude faster than the SFCO-AMD approach. The proposed
algorithm also has a 12% higher acceptance rate at the cost of an
end-to-end latency increase by 5ms. As a part of our future work
we plan to verify the proposed framework in a Mininet emulator
and a real-world testbed.

8 ACKNOWLEDGMENT
This work has been partially supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) grants EP/P004407/2
and EP/P004024/1, and InnovateUK grant 106199-47198; the Chinese
National Research Fund (NSFC) No. 62172189 and 61772235, and the
Science and Technology Program of Guangzhou No. 202002030372;
the China Scholarship Council (CSC).

REFERENCES
[1] Ahmed Abujoda and Panagiotis Papadimitriou. 2016. DistNSE: Distributed net-

work service embedding across multiple providers. In 2016 8th International
Conference on Communication Systems and Networks, COMSNETS 2016. Institute
of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/COMSNETS
.2016.7439948

[2] Amazon. 2021. EC2 On-Demand Instance Pricing – Amazon Web Services.
https://aws.amazon.com/ec2/pricing/on-demand/.

[3] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravin-
dranath, and S. Sinha. 2017. Real-Time Video Analytics: The Killer App for Edge
Computing. Computer 50, 10 (2017), 58–67.

[4] Kiril Antevski and Carlos J. Bernardos. 2020. Federation of 5G
services using distributed ledger technologies†. Internet Tech-
nology Letters 3, 6 (2020), e193. https://doi.org/10.1002/itl2.193
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/itl2.193

[5] Deval Bhamare, Aiman Erbad, Raj Jain, Maede Zolanvari, and Mohammed
Samaka. 2018. Efficient virtual network function placement strategies for Cloud
Radio Access Networks. Computer Communications 127 (sep 2018), 50–60.
https://doi.org/10.1016/j.comcom.2018.05.004

[6] Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, and
H. Anthony Chan. 2017. Optimal virtual network function placement in multi-
cloud service function chaining architecture. Computer Communications 102
(2017), 1–16. https://doi.org/10.1016/j.comcom.2017.02.011

[7] L Cui, F Tso, and W Jia. March 2020. Federated Service Chaining: Architecture
and Challenges. IEEE Communications Magazine 58, 3 (March 2020), 47–53.

[8] Lin Cui, Fung Po Tso, Song Guo, Weijia Jia, Kaimin Wei, and Wei Zhao. 2019.
Enabling Heterogeneous Network Function Chaining. IEEE Transactions on
Parallel and Distributed Systems 30, 4 (apr 2019), 842–854. https://doi.org/10.
1109/TPDS.2018.2871845

[9] David Dietrich, Ahmed Abujoda, Amr Rizk, and Panagiotis Papadimitriou. 2017.
Multi-Provider Service Chain Embedding With Nestor. IEEE Transactions on
Network and Service Management 14, 1 (mar 2017), 91–105. https://doi.org/10.
1109/TNSM.2017.2654681

[10] Flavio Esposito, Maria Mushtaq, Michele Berno, Gianluca Davoli, Davide Bor-
satti, Walter Cerroni, and Michele Rossi. 2021. Necklace: An Architecture
for Distributed and Robust Service Function Chains With Guarantees. IEEE
Transactions on Network and Service Management 18, 1 (2021), 152–166.
https://doi.org/10.1109/TNSM.2020.3036926

[11] Antonio Francescon, Giovanni Baggio, Riccardo Fedrizzi, Ramon Ferrusy,
Imen Grida Ben Yahiaz, and Roberto Riggio. 2017. X–MANO: Cross–domain
management and orchestration of network services. In 2017 IEEE Conference on
Network Softwarization (NetSoft). 1–5. https://doi.org/10.1109/NETSOFT.2017.
8004223

[12] Racha Gouareb, Vasilis Friderikos, and Aghvami. 2018. Virtual Network Functions
Routing and Placement for Edge Cloud Latency Minimization. IEEE Journal on
Selected Areas in Communications 36, 10 (oct 2018), 2346–2357. https://doi.org/
10.1109/JSAC.2018.2869955

[13] LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[14] Wajdi Hajji, Thiago A.L. Genez, Fung Po Tso, Lin Cui, and Iain Phillips. 2018.
Dynamic Network Function Chain Composition for Mitigating Network Latency.
In Proceedings - IEEE Symposium on Computers and Communications, Vol. 2018-
June. Institute of Electrical and Electronics Engineers Inc., 316–321. https:
//doi.org/10.1109/ISCC.2018.8538646

[15] Ed. J. Halpern and Ed. C. Pignataro. 2015. RFC 7665 - Service Function Chaining
(SFC) Architecture. Internet Engineering Task Force (IETF) - Request for Comments:
7665 (2015), 487–492. https://tools.ietf .org/html/rfc7665http://ir.obihiro.ac.jp/d
space/handle/10322/3933

[16] Kalpana D. Joshi and Kotaro Kataoka. 2020. pSMART: A lightweight, privacy-
aware service function chain orchestration in multi-domain NFV/SDN. Computer
Networks 178 (2020), 107295. https://doi.org/10.1016/j.comnet.2020.107295

[17] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications 29, 9
(2011), 1765–1775. https://doi.org/10.1109/JSAC.2011.111002

[18] Whay C. Lee. 1995. Topology aggregation for hierarchical routing in ATM
networks. Computer Communication Review 25, 2 (1995), 82–92. https://doi.or
g/10.1145/210613.210625

[19] J. Pei, P. Hong, K. Xue, and D. Li. 2018. Resource Aware Routing for Service
Function Chains in SDN and NFV-Enabled Network. IEEE Transactions on Services
Computing (2018), 1–1.

[20] C Pham, N Tran, S Ren, W Saad, and C Hong. 1 Jan.-Feb. 2020. Traffic-Aware
and Energy-Efficient vNF Placement for Service Chaining: Joint Sampling and
Matching Approach. IEEE Transactions on Services Computing 13, 1 (1 Jan.-Feb.
2020), 172–185. https://doi.org/10.1109/TSC.2017.2671867

[21] Chuan Pham, Nguyen H. Tran, Shaolei Ren, Walid Saad, and Choong Seon Hong.
2017. Traffic-aware and Energy-efficient vNF Placement for Service Chaining:
Joint Sampling and Matching Approach. IEEE Transactions on Services Computing

https://doi.org/10.1109/COMSNETS.2016.7439948
https://doi.org/10.1109/COMSNETS.2016.7439948
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://doi.org/10.1002/itl2.193
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/itl2.193
https://doi.org/10.1016/j.comcom.2018.05.004
https://doi.org/10.1016/j.comcom.2018.05.004
https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/10.1109/TPDS.2018.2871845
https://doi.org/10.1109/TPDS.2018.2871845
https://doi.org/10.1109/TNSM.2017.2654681
https://doi.org/10.1109/TNSM.2017.2654681
https://doi.org/10.1109/TNSM.2020.3036926
https://doi.org/10.1109/TNSM.2020.3036926
https://doi.org/10.1109/NETSOFT.2017.8004223
https://doi.org/10.1109/NETSOFT.2017.8004223
https://doi.org/10.1109/JSAC.2018.2869955
https://doi.org/10.1109/JSAC.2018.2869955
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/ISCC.2018.8538646
https://doi.org/10.1109/ISCC.2018.8538646
https://tools.ietf.org/html/rfc7665 http://ir.obihiro.ac.jp/dspace/handle/10322/3933
https://tools.ietf.org/html/rfc7665 http://ir.obihiro.ac.jp/dspace/handle/10322/3933
https://doi.org/10.1016/j.comnet.2020.107295
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/210613.210625
https://doi.org/10.1145/210613.210625
https://doi.org/10.1109/TSC.2017.2671867

UCC ’21, December 6–9, 2021, Leicester, United Kingdom Chen Chen, Lars Nagel, Lin Cui and Posco Tso

(feb 2017), 1–1. https://doi.org/10.1109/tsc.2017.2671867
[22] Gang Sun, Yayu Li, Dan Liao, and Victor Chang. 2018. Service function chain

orchestration across multiple domains: A full mesh aggregation approach. IEEE
Transactions on Network and Service Management 15, 3 (sep 2018), 1175–1191.
https://doi.org/10.1109/TNSM.2018.2861717

[23] X. Wang, X. Li, S. Pack, Z. Han, and V. C. M. Leung. 2020. STCS: Spatial-Temporal
Collaborative Sampling in Flow-Aware Software Defined Networks. IEEE Journal
on Selected Areas in Communications 38, 6 (2020), 999–1013. https://doi.org/10.
1109/JSAC.2020.2986688

[24] Jin Y. Yen. 1971. Finding the K Shortest Loopless Paths in a Network .Management
Science 17, 11 (jul 1971), 712–716. https://doi.org/10.1287/mnsc.17.11.712

[25] Zijun Zhang, Zongpeng Li, Chuan Wu, and Chuanhe Huang. 2017. A Scalable
and Distributed Approach for NFV Service Chain Cost Minimization. In 2017
IEEE 37th International Conference on Distributed Computing Systems (ICDCS).
2151–2156. https://doi.org/10.1109/ICDCS.2017.210

[26] D. Zheng, C. Peng, X. Liao, L. Tian, G. Luo, and X. Cao. 2020. Towards Latency
Optimization in Hybrid Service Function Chain Composition and Embedding. In
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. 1539–1548.
https://doi.org/10.1109/INFOCOM41043.2020.9155529

[27] Zhi Zhou, Qiong Wu, and Xu Chen. 2019. Online Orchestration of Cross-Edge
Service Function Chaining for Cost-Efficient Edge Computing. IEEE Journal on
Selected Areas in Communications 37, 8 (aug 2019), 1866–1880. https://doi.org/
10.1109/JSAC.2019.2927070

https://doi.org/10.1109/tsc.2017.2671867
https://doi.org/10.1109/TNSM.2018.2861717
https://doi.org/10.1109/TNSM.2018.2861717
https://doi.org/10.1109/JSAC.2020.2986688
https://doi.org/10.1109/JSAC.2020.2986688
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1109/ICDCS.2017.210
https://doi.org/10.1109/INFOCOM41043.2020.9155529
https://doi.org/10.1109/JSAC.2019.2927070
https://doi.org/10.1109/JSAC.2019.2927070

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Physical Network
	3.2 Service Function Chaining Model
	3.3 SFC Request Affinity

	4 Problem Description
	4.1 Problem Statement
	4.2 SFC Orchestration Problem In Heterogeneous Multi-domain Networks

	5 Distributed Federated Service Chaining
	5.1 Constructing Aggregated Graph
	5.2 Distributed Federated Service Chain Placement

	6 Evaluation
	6.1 Evaluation environment
	6.2 Evaluation results

	7 Conclusion
	8 Acknowledgment
	References

