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a b s t r a c t 

Data center operators deploy a variety of both physical and virtual network functions boxes (NFBs) to 

take advantages of inherent efficiency offered by physical NFBs with the agility and flexibility of virtual 

ones. However, such heterogeneity faces great challenges in correct, efficient and dynamic network policy 

implementation because, firstly, existing schemes are limited to exclusively physical or virtual NFBs and 

not a mix, and secondly, NFBs can co-exist at various locations in the network as a result of emerging 

technologies such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). 

In this paper, we propose a H eterogeneous netw O rk p O licy enfor C ement scheme (HOOC) to overcome 

these challenges. We first formulate and model HOOC, which is shown be to NP-Hard by reducing from 

the Multiple Knapsack Problem (MKP). We then propose an efficient online algorithm that can achieve 

optimal latency-wise NF service chaining amongst heterogenous NFBs. In addition, we also provide a 

greedy algorithm when operators prefer smaller run-time than optimality. Our simulation results show 

that HOOC is efficient and scalable whilst testbed implementation demonstrates that HOOC can be easily 

deployed in the data center environments. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Data center operators deploy a great variety of network func-

tions (NFs) such as firewall (FWs), content filter, intrusion preven-

tion/detection system (IPS/IDS), deep packet inspection (DPI), net-

work address translation (NAT), HTTP/TCP performance optimizer,

load balancer (LB), and etc., at various points in the network topol-

ogy to safeguard networks and improve application performance

[1] . Each network function is responsible for specific treatment of

received packets, including forwarding, dropping, rate-limiting, in-

specting, and/or modifying packets. In practice, various permuta-

tions of or subsets of these functions form an ordered composition

(or service chain) – as defined by a network policy [2] – that must

be applied to packets in uni-directional or bi-directional manner.

This process is also known as network service chaining [3] . Hence,

network policy enforcement implies correct and efficient chaining of

network functions . 

Nowadays, network functions are either embedded in purpose-

built proprietary hardware, i.e., middleboxes (MBs), or appear as

virtual instances running on top of commodity servers through
∗ Corresponding author. 
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FV (Network Function Virtualization). We term both hardware

iddleboxes and NFV servers as Network Function Boxes (NFBs).

hysical NFBs are more efficient because they are built with ded-

cate hardware for optimizing the performance of specific func-

ions but are proprietary and hence less extensible. On the other

and, virtualized NFBs have the agility for rapid on-demand de-

loyment and greater degree of programmability for software au-

omation but are less efficient due to virtualization overhead, re-

ource sharing, and general-purpose hardware [4] . 

In addition to hardware middleboxes and general-purpose NFV

ervers, with the power of SDN (Software Defined Networking),

ome simple network function such as firewall and NAT can also

e easily and efficiently implemented in SDN switches [5] . 

Obviously, except purpose-built physical NFBs, a network func-

ion can be independently allocated to different servers and SDN

witches in the network or collocated with other network func-

ions within a switch or server [3,6] . 

In fact, today’s data center operators adopt mixture of both

hysical and virtual NFBs to captialize on the efficiency of physi-

al ones and the agility and flexibility of virtual ones [3] . 

Nevertheless, coming with this hybrid heterogeneous paradigm

re significant challenges on the correct implementation of net-

ork policies in today’s data centers: (1) Support for deployment

https://doi.org/10.1016/j.comnet.2018.03.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.03.029&domain=pdf
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f network policies is limited exclusively to either physical or vir-

ualized NFBs. There is no existing mechanisms for supporting si-

ultaneous use of both form factors [2,7–9] ; (2) Large variety of

FBs at distinct network locations means that the choices for cor-

ect service chaining has grown exponentially. We show that large

ariation in round trip times (RTTs) can be observed for NFBs with

ifferent capacity (detailed in Section 2 ). Given most data cen-

er workloads are latency-sensitive and are prone to unpredictable

lowdown along the end-to-end links [10,11] , how could we ensure

hat latency for all policy chains is optimal ? 

In this paper, we propose a H eterogeneous netw O rk p O licy

nfor C ement scheme (HOOC), which is an adaptive network pol-

cy implementation scheme that will not only support the use of

oth physical and virtual NFBs but also minimize latency along the

olicy path (i.e. service chain) such that end-to-end delay will be-

ome more predictable. Our experimental evaluation demonstrates

hat HOOC can achieve optimal placement of network functions

mongst heterogeneous NFBs. 

The contribution of this paper is fourfold. 

1. We experimentally show that performance heterogeneity for

running same network functions on different NFBs. 

2. We formulate HOOC and prove that it is NP-Hard, by reducing

from the Multiple Knapsack Problem (MKP). 

3. We model the heterogeneity of NFBs by constructing cost net-

work graphs and propose an efficient online Shortest Service

Chain Path (SSP) algorithm for finding the shortest path (min-

imal latency) for any given policy in a cost network graph. 

4. Our simulation results show that the HOOC scheme is efficient

and scalable. Our testbed results show that the HOOC scheme

is practical. 

The remainder of this paper is structured as follows.

ection 2 presents our simple experiments on revealing perfor-

ance heterogeneity across the same network function on differ-

nt NFBs of various capacity. Section 3 describes the problem for-

ulation and the model of HOOC. Efficient schemes for HOOC are

roposed in Section 4 , followed by testbed implementation the

erformance evaluation of HOOC in Section 5 and Section 6 respec-

ively. Section 7 outlines related works, and Section 8 concludes

he paper and indicates the future direction of this work. 

. NFB performance heterogeneity 

In order to understand the extent to which the performance

eterogeneity existing amongst the same network functions on dif-

erent NFB configurations, we have carried out a set of simple ex-

eriments using three commodity servers and one Pronto 3295

DN switch. Each server is configured with an Intel’s Xeon E5-1604

 cores CPU, 16GB RAM and a dual port 1 Gbps NIC (Network Inter-

ace Card), and with Ubuntu 14.04 as operating system. One server

as been used as virtualised NFB, with KVM (Kernel-based Virtual

achine) as the hypervisor. The other two servers have been used

or running iPerf [12] client and server respectively. Both the client

nd server were connected to the NFB directly via 1 Gbp/s links.

e have also used a Pronto 3295 SDN switch to emulate a hard-

are NFB. 

We have used two popular open-sourced software – Firewall

pfSense v2.3.1 [13] ) and IDS/IPS (Snort v2.9.8 [14] ) – as our net-

ork functions. For firewall experiments, a NAT has been created

nd used, meaning that the client and server resided in two dif-

erent networks. For IDS/IPS experiments, both client and server

ere in the same network, meaning that the two physical network

orts on the NFB were bridged by software bridge. IDS/IPS rules

sed were default rules pulled from Snort website. In addition to

irtualized firewall, we have also programmed the SDN controller
o write some static flow entries to the Pronto switch to make it a

imple hardware-based NAT. 

In all experiments, we have used iPerf to stress the server with

CP requests and record the traffic with tcpdump on both client

nd server. Since we are particularly interested in the end-to-end

atency, we have used Wireshark ( tshark ) to compute packet round-

rip-time (RTT) from recorded traffic streams. 

.1. Correlation with number of CPUs 

We first study the correlation of performance heterogeneity of

etwork function with different number of allocated CPUs on NFB.

n this set of experiments, we have first allocated only one vCPU

1 vCPUs, 2GB RAM) for both pfSense and Snort servers and then

ncreased the number of vCPUs to two, while keeping the memory

2 vCPUs, 2GB RAM) and other configurations unchanged. 

The computed RTT from the recorded traffic has been demon-

trated in Fig. 1 . Since no links in this setup are over-subscribed,

he likelihood of traffic congestion is low. Thus, processing de-

ay accounts for significant portion of end-to-end latency. Clearly,

ig. 1 (a) shows that having twice as much hardware resource does

ot significantly improve RTT as there is only about 5% improve-

ent at the region above 80 percentile. In comparison, the hard-

are switch implementation has much smaller and predictable

TT, even at 99 percentile. Fig. 1 (b) shows more diverse perfor-

ance results amongst two configurations for Snort IDS/IPS in

hich 2 vCPUs could give significantly better performance up to as

uch as 100%. The steps observed in figures are attributed to the

ifferent com putation demands required by various intrusion de-

ection rules. This means some packets are scrutinized more heav-

ly whereas some are less. 

In addition, we have also noticed that the magnitude of RTT for

nort is two orders higher than that of pfSense. This is because the

fSense’s workload was mainly on examining the packet header for

AT translation, whereas for IDS/IPS the workload was mainly on

eep packet inspection. 

.2. Correlation with size of memory 

In this set of experiments, we have only altered the configura-

ion (1 vCPU, 2GB RAM) to increase the size of memory from 1GB

o 4GB (1 vCPU, 4GB RAM). The results shown in Fig. 2 exhibit only

mall differences in performance across two configurations. Clearly,

his set of experiments has revealed that the performance of net-

ork function is largely limited by NFB’s processing capacity rather

han its amount of memory (as long as it meets minimum require-

ents). 

. Problem modeling 

In this section, we will describe the heterogeneous network

olicy problem. Table 1 summaries notations used in the paper. 

.1. Overview 

In this paper, as opposed to existing works which only con-

ider homogeneous NFBs deployment, we consider a heteroge-

eous environment. Network functions can be implemented at var-

ous network locations, either in-network or at-edge, and on dif-

erent kinds of NFBs such as hardware middleboxes, commodity

ervers, and (SDN) switches/routers. These NFBs are distinctively

ifferent in the following ways: 

• Hardware middbleboxes are vendor specific, proprietary boxes

for providing specific network functions. Their designs are of-

ten optimized for performance and are less extensible. On the

contrary, 
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Fig. 1. CDF of RTTs for pfSense and Snort NFBs with different numbers of allocated virtual CPU. 

Fig. 2. CDF of RTTs for pfSense and Snort NFBs with different sizes of allocated memory. 

Table 1 

Notations and parameters. 

Symbol Description 

B , b i B is set of all NFBs, b i ∈ B 
Cap ( b i ), TypeSet ( b i ) Maximum capability and supported NF types of b i 
N , n i N is set of all NFs, n i ∈ N 
Type ( n i ), Req ( n i ), Loc ( n i ) Function type of n i , processing requirement of n i and the NFB hosts n i 
P , p i P is set of all network policies, p i ∈ P 
src i , dst i Source and destination of p i 
Len ( p i ) Number of NFs in p i 
P i All possible sequence of p i with re-ordering 

D ( n i , n j ) Dealy between n i and n j 
t i s , t 

i 
w Service time and average waiting time of n i 

λi Packet arrival rate of n i 
t p ( n i ) Processing delay of n i 
T ( p i ) Expected delay for the flow constrained by p i 
B j Nodes in the j th tier of the service chain network 
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• NFV servers are virtualized that can run multiple, and theoret-

ically, any types of virtual network functions. As they are built

on virtualization, better agility can be guaranteed. 

• Some simple network functions can also be implemented on

switches or routers such as VPN, simple firewalls which can only

perform packet filtering, and load balancers. They are amongst

hardware middleboxes. However, SDN can allow us to exploit

the OpenFlow switches to increase the performance of service

chain by installing some rules (i.e., network function) to their

flow tables [5] . 

Since each types of NFs implementations above have their own

advantages, we anticipate that the heterogeneous implementation

of network functions will exist for the foreseeable future. 

Denote B = { b 1 , b 2 , . . . } to be the set of all NFBs in a data center.

For a NFB b i , Cap ( b i ) denotes the maximum processing capability

of b , measuring in number of packets per second ( pps ), e.g., 3800
i 
ps [15] . TypeSet ( b i ) specifies the set of supported network function

ypes on b i . NFV servers, theoretically, support all types of network

unction, while hardware MBs and switches can only support one

r few types of network functions. Without loss of generality, we

ssume that the memory space of NFBs are enough to accommo-

ate states information of all network functions, i.e., bottleneck is

he processing capacity as shown in Section 2 . 

Let N = { n 1 , n 2 , . . . } be the set of all network function instances

n data center. The Type ( n i ) defines the function of n i , e.g., IPS/IDS,

B , or FW. Req ( n i ) is essentially the requirement of n i on the pro-

essing capacity of NFBs in pps. Loc ( n i ) is the NFB that currently

osts n i . One main objective in this paper is to find an appropri-

ted NFB for Loc ( n i ). 

The set of network functions in N may belong to different ap-

lications, and are deployed and configured by a centralized Policy

ontroller [9] . The centralized Policy Controller monitors and con-
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Fig. 3. Service chain example for heterogeneous environment: red arrow shows 

original service chain path: Source → LB → IDS → Monitor → Destination, green dash 

arrow shows the optimized path with re-ordering ( Mon and IDS ). (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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rols the liveness of network functions and NFBs, including addi-

ion, failure/removal or migration of a network function. Network

dministrators can specify and update policies through the Policy

ontroller . 

The set of network policies is P , which can be defined by

sers or administrators. In reality, one policy can be applied to

ultiple flows and a single flow can be subject to the gover-

ance of multiple policies. For each p i ∈ P , src i and dst i specify

he source and destination of p i respectively. All packets matched

o them should be constrained by p i . The ordered list contained

n p i defines the sequence of NFs that all flows matching pol-

cy p i should traverse in order, and p i [ j ] refers to the j th NF.

or example, p i = (n 1 , n 2 , n 3 ) , where T ype (n 1 ) = F W, T ype (n 2 ) =
P S, T ype (n 3 ) = P roxy . And Len ( p i ) is number of NFs of p i . 

All NFs in p i must be assigned to appropriate NFBs beforehand,

nd we assume there are enough NFBs to accommodate all re-

uired network functions in data center. Since we consider hetero-

eneous network functions, there are various possible locations for

ach network function in p i . For example, in the above example of

 i , Loc ( n 1 ) could be a core router, Loc ( n 2 ) could be a hardware NFB,

nd Loc ( n 3 ) could be a NFV server. An example of service chain is

iven in Fig. 3 . Next, we will consider the problem of heteroge-

eous policy placement. 

.2. Delays with network functions 

There are many metrics to measure the efficiency of network

unction placement (service function chaining) for a policy such as

ommunication cost [16,17] . In this paper, we mainly focus on the

atency of a policy flow. However, the main idea in this paper can be

asily applied to other metrics. 

The total delay of a flow includes the transmission delay among

djacent network functions in the service chain and processing de-

ay of network functions. 

.2.1. Transmission delays 

In order to steer traffic to the service chain, either Policy Based

outing (PBR) or VLAN stitching can be used in data centers [3] .

or either case, the intended solution in this paper should be unaware

f these schemes and is general and applicable to the schemes. So, we

o not consider the detailed routing between two NFBs. 

Since, in production data centers, the transmission delay of

inks in its path are relatively stable and can be easily ob-

ained/estimated through large-scale measurement [18] , we as-
ume the transmission delay between two network functions is

nown and can be obtained through the controller. 

The controller will maintain a transmission delay matrix D ,

 (n i , n j ) = D (n j , n i ) is the delay between n i an n j . D (n i , n j ) = −1

f the delay is unknown or they are unreachable. In either cases,

aths with D (n i , n j ) = −1 will not be considered for arrangement

f service chains. 

.2.2. Processing delays of network functions 

We define service time t i s as the time that n i takes to process a

acket. Since that many network functions such as proxies, fire-

alls and load balancers only process packet headers of which

izes are fixed, ignoring variable length data payloads. Thus, the

ervice time t i s is a constant [19] . Specially, considering the pro-

essing capacity Req ( n i ) of n i , t 
i 
s = 1 /Req (n i ) . 

If packets arrival rates is smaller than the processing capacity

f network function, the processing delay is equal to the service

ime. Otherwise, packets will be queued. For simplicity, we con-

ider a M/D/1 queue, and network functions process packets in a

irst-Come-First-Service (FCFS) discipline. Then, the processing de-

ay is the summation of waiting time and service time. The packet

rrival rate for n i is the total rates of all flows that need to be pro-

essed by n i , which is denoted by λi . The utilization ρi = λi ∗ t i s .

he average waiting time t i w 

of n i is 

 

i 
w 

= 

t i s ∗ ρ

2(1 − ρ) 
= 

λi ∗ t i s 
2 

2(1 − λi ∗ t i s ) 
(1) 

Thus, the processing delay of n i is: 

 p (n i ) = 

{
t i s λi ≤ Req (n i ) 
t i w 

+ t i s λi > Req (n i ) 
(2) 

.3. NF behavior and re-ordering of service chain 

We have surveyed a wide range of common network functions

nd service chains to understand their common behaviors and

roperties. Most of these NFs perform limited types of process-

ng on packets, e.g., watching flows but making no modification,

hanging packet headers and/or payload. For example, in the sim-

lest case, a flow monitor (FlowMon) obtains operational visibility

nto the network to characterize network and application perfor-

ance, and it never modify packet and flows [3] . Some NFs, e.g.,

DS, will check packet headers and payload, and raise alerts to the

ystem administrator. Some NFs (such as firewalls and IPS) do not

hange packet headers and payload, but they use packet header in-

ormation to make decision on whether to drop the packet or for-

ard it. Some NFs (such as NAT and LB) may check IP/port fields

n packet headers and rewrite these fields [7] . Others (such as traf-

c shaper) do not modify packet headers and payloads, but may

erform traffic shaping tasks such as active queue management or

ate limiting [20] . 

For a service chain, certain ordering requirement of NFs natu-

ally exists due to the nature of the functions applied. For instance,

or a service chain applied to North–South traffic in datacenters, a

eb Optimization Control (WOC) is not effective on VPN traffic, re-

uiring VPN termination prior to WOC [3] . For other service chain

ith IDS and FlowMon, since IDS never change the packet content,

lowMon can be applied to the traffic after IDS or placed prior to

DS. If the order of some NFs in a service chain is allowed to be

e-organized, there could be more opportunities to improve per-

ormance by reducing the length of the service chain path such as

he example shown in Fig. 3 . 

In order to model these properties of NFs and leverage these

roperties, we can classify NFs into several classes according to

heir behaviors: 
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Table 2 

Examples of the dynamic actions performed by different NFs that are com- 

monly used today [7] . 

Network Functions Input Actions Type 

FlowMon Header No change Static 

IDS Header, Payload No change Static 

Firewall Header Drop? Dropper 

IPS Header, Payload Drop? Dropper 

NAT Header Rewrite header Modifier 

Load balancer Header Rewrite header Modifier 

Redundancy eliminator Payload Rewrite payload Modifier 
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o 1 i 2 i 1 2 1 2  
• Modifier (M): NFs that may modify the content of a packet

(header or payload), e.g., NAT, Proxy; 

• Shaper (Sh): NFs that perform traffic shaping tasks such as ac-

tive queue management or rate limiting, e.g., rate limiter. 

• Dropper: NFs that may drop packets of flows, but never modify

header of payload of packets, e.g., firewall. 

• Static: NFs do not modify the packet or its forwarding path, and

in general do not belong to the classes above, e.g., FlowMon,

IDS. 

Table 2 summarizes the dynamic actions performed by different

NFs that are commonly used today. 

To preserve the correctness of service chain, users can specify

constraints on the order of NFs in service chains. For example, we

can change the order of static NFs, and move static NFs before

Dropper NFs. However, we cannot move static NFs across Modi-

fiers, as this might lead to incorrect operation. 

In the example shown in Fig. 3 , the service chain is

LB → IDS → Monitor and the total service chain path from the

source to destination has 10 hops. Since that both IDS and Mon-

itor are static NFs and do not modify packets, their orders can be

switched. By switching the position of IDS and Monitor , the new

service chain path (green dashed arrow in the figure) only has 8

hops. Furthermore, with heterogeneous NFBs (e.g., hardware or vir-

tualized), there would be more opportunity for improving perfor-

mance if re-ordering is allowed. 

Considering the re-ordering of service chain, we define

P i to be a set of all possible NFs sequence of the ser-

vice chain, i.e., P i = { l 1 , l 2 , . . . } . For example, suppose the ser-

vice chain of p i is Firewall 1 → IDS 1 → FlowMon 1 , and the posi-

tion of IDS 1 and FlowMon 1 can be swapped. Then, P i = { l 1 =
(F irewall 1 , IDS 1 , F lowMon 1 ) , l 2 = (F irewall 1 , F lowMon 1 , IDS 1 ) } . NFs

of p i can be organized according to any sequence defined in P i . 

The policy p i is called satisfied if and only if the following con-

dition holds: 

p i [ j] == l[ j] , ∀ j = 1 , 2 . . . , Len (p i ) , ∃ l ∈ P i (3)

The final assigned sequence of p i must be equal to l , where l can

be any accepted list in P i with re-ordering. 

3.4. Heterogeneous network policy enforcement problem 

The expected delay for the flow constrained by policy p i is de-

fined as: 

T (p i ) = D (src i , p i ) 

+ 

len (p i ) −1 ∑ 

j=1 

(D (p i [ j] , p i [ j + 1]) + t p (p i [ j])) 

+ D (p i [ Len (p i )] , dst i ) 

(4)

We aims to reduce the total delay by efficiently placing network

functions onto heterogeneous NFBs while strictly adhering to net-

work policies. Denote A ( n i ) to be the NFB which hosts n i , and H ( b j )

is the set of network functions hosted by b j . 
The Heterogeneous Network Policy Enforcement problem is de-

ned as follows: 

efinition 1. Given the set of policies P , NFBs B and delay matrix

 , we need to find an appropriate allocation of network functions,

hich that minimizes the total expected end-to-end delays of the

etwork: 

min 

∑ 

p k ∈ P 
T (p k ) 

s.t. p k is satisfied , ∀ p k ∈ P 

A (n i ) � = ∅ && | A (n i ) | = 1 , ∀ n i ∈ p k , ∀ p k ∈ P ∑ 

n i ∈ H(b j ) 

Req (n i ) < Cap(b j ) , ∀ b j ∈ B 

(5)

The first constraint ensure that network functions of all service

hains are appropriately accommodated by one NFB. The second

onstraint is the capacity constraint of all NFBs. 

The above problem can be easily proven to be NP-Hard : 

roof. To show that Heterogeneous Network Policy Enforcement

roblem is NP-Hard, we will show that the Multiple Knapsack Prob-

em (MKP) [21] , whose decision version has already been proven to

e strongly NP complete, can be reduced to this problem in poly-

omial time. 

Consider a special case of Heterogeneous Policy Enforcement

roblem that the service chain of all policies contain only one net-

ork function. Assume that transmission delays between servers

nd NFBs are the same and there are enough NFBs, meaning that

o NFBs are saturated. 

Consider each network function n i to be an item, where its re-

uirement Req ( n i ) is item size. Each NFB b j is a knapsack with

imited capacity Cap ( b j ). The profit of assigning n i to each NFB is

he negative of the delays. Then the Heterogeneous Network Policy

nforcement problem becomes finding an allocation of all network

unctions to NFBs, maximizing the total profit. Therefore, the MKP

roblem is reducible to the Heterogeneous Policy Enforcement prob-

em in polynomial time, and hence the Heterogeneous Policy En-

orcement problem is NP-hard. �

. Heterogeneous policy enforcement 

In this section, we introduce HOOC , a H eterogeneous netw O rk

 O licy enfor C ement scheme. 

.1. Service chain network 

We consider an online solution which process one service chain

t a time when a new policy requirement arrives. 

For each policy p i , we need to find appropriate NFBs to accom-

odate all network functions in p i with an objective to minimize

ts total expected delay T ( p i ). Considering re-ordering of service

hain, for each candidate service chain l ∈ P i , we construct a graph

 

l , which is a m -tier directed graph ( m = Len (p i ) ). Nodes in the j th

ier are NFBs defined by B j : 

B j = { b k | l[ j] ∈ T ypeSet(b k ) and ∑ 

n ∈ A (b k ) 

Req (n ) + Req (l[ j]) ≤ Cap(b k ) , ∀ b k ∈ B } (6)

or a node x in j th ( j ≤ m − 1) tier and y in ( j + 1) th tier, there

s a directed edges from x to y if y is reachable from x and the

eight of the edge is D (x, y ) + t p (y ) . It is possible that both x and

 are the same NFB. In this case, D (x, y ) = 0 . 

Then, for each l ∈ P i , we can construct a graph G 

l , and all those

raphs can be merged into one single graph G . During the merge

peration, for any l ∈ P and l ∈ P ( l � = l ), if l [ j] = l [ j] , nodes in
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Fig. 4. Example of service chain network with length of 3. 
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Algorithm 1 SSP:Shortest Service Chain Path. 

Input: Service chain Network G (V, E) , p i , B , N , D 

Output: Shortest service chain path to dst i 
1: S ← ∅ 
2: d(v ) ← ∞ , ∀ v ∈ V 

3: pre v [ v ] ← undefined, ∀ v ∈ V 

4: d(src i ) ← 0 

5: while S � = V do 

6: u ← argmin v ∈ V \ S d(v ) 
7: if u = dst i then 

8: break 

9: end if 

10: S ← S ∩ { u } 
11: n k ← network function in p i that will be placed in u 

12: for each neighbor v of u do 

13: if d(v ) > d(u ) + D (u, v ) then 

14: if v �∈ getPath (pre v , u ) or 
∑ 

n j ∈ H(v ) Req (n j ) + 

Req (n k ) ≤ Cap(v ) then 

15: d(v ) ← d(u ) + D (u, v ) 
16: pre v [ v ] ← u 

17: pre v [ v ] .n f ← n k 
18: end if 

19: end if 

20: end for 

21: end while 

22: return getPath (pre v , dst i ) 

Algorithm 2 getPath ( prev, dst ). 

1: ssp ← ∅ 
2: l ← ∅ 
3: u ← dst 

4: while pre v [ u ] is defined do 

5: insert u at the beginning of ssp 

6: insert pre v [ u ] .n f at the beginning of l 

7: u ← pre v [ u ] 
8: end while 

9: insert u at the beginning of ssp 

10: return ssp and l 
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 th tier of G 

l 1 can be merged with nodes of j th tier in G 

l 2 accord-

ngly. If two neighbor nodes x and y in G 

l 1 are merged to neighbor

odes x ′ and y ′ in G 

l 2 , the link between them must have the same

eight and can be merged too. 

Flow originates from the source ( src i ) and terminate at the sink

 dst i ). For a node x in 1st tier, the weight of the directed edges

rom src i to x is D (src i , x ) + t p (s ) . For a node y in l th tier, the

eight of the directed edges from y to dst i is D ( y, dst i ). 

The resulted graph G is called the Service Chain Network of p i .

n example of service chain network is given in Fig. 4 . 

.2. Shortest service chain path 

According to the construction process of service chain networks,

ny paths from source to sink need to traverse all tiers, i.e., all

Fs in the service chain. Edges among different tiers ensure that

ll those NFs are in correct order that are acceptable in P i . And

eights of edges are their corresponding delay. Thus, it is clear

hat the route with the smallest expected latency for a flow is

he shortest path from source to sink. We referred this path as

sp (Shortest service chain path). However, since nodes in differ-

nt tiers of the service chain network can be the same NFB with

imited capacity, we cannot simply re-use traditional shortest first

ath algorithms, e.g., Dijkstra, Floyd–Warshall. 

The difficulty here is that two nodes that belong to different

iers in the service chain network, say x and y , may be in the same

FB and share the same capacity. If we assign p i to x , it may satu-

ate the NFB such that y cannot further accept p i . In this case, we

all them conflict nodes . A path from the source will be blocked by

he latter one of the conflict nodes . 

Hence, we design the SSP (Shortest Service Chain Path) al-

orithm to find the shortest path in this situation, as shown in

lgorithm 1 . The d ( v ) is used to maintain the distance from source

o vertex v . It is initialized to be infinite and will be relaxed during

he course of the algorithm. The set S contains all vertices whose

nal shortest distance from the source have already been deter-

ined. Conflict nodes are handled in line 14. The shortest service

hain path are maintained in prev and can be obtained through

etPath () Algorithm 2 . 

Obviously, the shortest service chain path in Algorithm 1 is a

ariant of the Single-Source Shortest Path (SSSP) problem [22] . We

ave adapted it to handle the conflict nodes during discovering

he optimal path and it can be easily proven to be able to al-

ays find the optimal path. And the complexity of the algorithm

epends on the way of finding the vertex v with the smallest dis-

ance d ( v ), i.e., the argmin operation. Because paths with conflict

odes failed to reach the destination, not all vertices and edges are

hecked in Algorithm 1 . Thus, each vertex v ∈ V is added to set S

t most once (lines 6 ∼ 10), and each edge in E is examined in the

or loop of lines 12 ∼ 20 at most once during the course of the al-

orithm. A priority queue , which is a data structure consisting of

 set of item-key pairs, can be implemented for efficient opera-

ion of distance for each vertex. Operations supported by prior-

ty queue can be used to implement Algorithm 1 : insert , e.g., im-

licit in line 2; extract-min , returning the vertex with the mini-

um distance in line 6, i.e., the argmin operation; and decrease-
ey , decreasing the distance of a given vertex in line 15. Fur-

hermore, Fibonacci heaps [23] implement insert and decrease-key

n O (1) amortized time, and extract-min (i.e., argmin ) in O (log n )

mortized time, where n is the number of elements in the pri-

rity queue [22] . So, by using Fibonacci heaps, the running time

f Algorithm 1 is O (| E| + | V | log | V | ) , where | E | is the number of

dges and | V | is the number of vertices in the cost network. 

Network policy is often stable and is not transient. However,

e reckon the fact that traffic demand could change slowly over

ime and it is necessary to adapt to the changes. This can be eas-

ly achieved in HOOC through SDN mechanism: the Policy Con-

roller can periodically poll switches for traffic statistics to look for

hanges in traffic demand in specific part of network topology, and

hen trigger HOOC to re-optimize the policies that have been af-

ected. 

.3. Greedy approach 

Algorithm 1 ensures the optimality of the service chain path.

owever, it has one major drawback that its O (| E| + | V | log | V | )
ime complexity. Thus, we also propose a greedy approach, which

rades off small accuracy for significantly faster speed. 

The greedy approach of HOOC is described in Algorithm 3 .

he main idea of Greedy is that: for each element in the service
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Algorithm 3 Greedy. 

Input: p i , B , N , D 

Output: Service chain path to dst i 
1: path ← ∅ 
2: B ′ 

j 
← B j , ∀ j = 1 , 2 . . . ,Len (p i ) 

3: j ← 1 

4: while j ≤Len (p i ) do 

5: if B ′ 
j 
= ∅ then 

6: j ← j − 1 

7: if j < 1 then 

8: path ← ∅ � no available path 

9: break 

10: end if 

11: remove last node in path 

12: B ′ 
j+1 

← B j+1 

13: continue 

14: end if 

15: u ← argmin v ∈ B ′ 
j 
D (path [ end] , v ) 

16: B ′ 
j 
← B ′ 

j 
\ { u } 

17: n k ← network function in p i that will be placed in u 

18: if u �∈ path or 
∑ 

n ′ ∈ H(u ) Req (n ′ ) + Req (n k ) ≤ Cap(u ) then 

19: append u at the end of path 

20: if j = Len (p i ) then 

21: break 

22: else 

23: j ← j + 1 

24: end if 

25: end if 

26: end while 

27: return path 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. An example RTT for server pair (s1,s16). 
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chain, the algorithm will choose a NFBs with the smallest delay to

the source or previous NF in the service chain. If current path is

blocked by a conflict node , the algorithm will fall back to previous

NF and choose the NFB with 2nd smallest delay. This process will

continue until the destination is reached, or there is no available

path. If multiple candidated service chain are available in P i , the B j 
contains acceptable NFBs defined in Eq. (6) . Specially, for any l 1 ∈ P i 
and l 2 ∈ P i ( l 1 � = l 2 ), if l 1 [ j] = l 2 [ j] , same NFBs obtained for l 1 and l 2
will be merged as a single node, otherwise, they will be treated as

different nodes. 

5. Implementation 

5.1. Testbed 

We have implemented on a proof-of-concept testbed consists

of 16 Raspberry Pis (Model 2B) [24] , two Pronto 3295 SDN (2x48

ports) switches and a Ryu SDN controller running on an Intel’s

Xeon E5-1604 4 cores CPU and 16GB RAM. We constructed a fat-

tree topology ( k = 4 ) by logically slicing [25] two pronto switches

into 20 4-port SDN switches. As a result of slicing, we had to man-

ually construct the topology graph in the Ryu controller. However,

we note that Ryu has a built-in feature that can automatically learn

network topologies if regular switches are used. Our example NFs

are mainly simple container-based firewalls [26] . We have also at-

tached an IDS/IPS used in Section 2 to one of spare SDN switch

ports and is seen as a hardware NFB. 

5.2. Link latency 

In order to obtain needed link latency we have implemented a

reduced version of Pingmesh Agent [18] using C ++ for better per-

formance and accuracy. This Pingmesh Agent pings all servers (i.e.
aspberry Pis) using TCPing , and measures round-trip-time (RTT)

rom the TCP-SYN/SYN-ACK intervals. An example server pair ( s 1,

 16) RTT is shown in Fig. 5 . The average memory footprint is less

han 2MB, and the average CPU usage is less than 1%. Ping traffic

s very small and ping interval is configurable according to actual

eeds. 

The ping results are uploaded to the controller periodically

or constructing all pairs end-to-end latency table which can be

ueried using host IP address. This is because we assume that most

f deployed NFs will run in commodity servers. There are also

ome in-network hardware NFBs, as defined in 3.1 , that are either

DN switches or attached directly to the switches. Hence the de-

ay from/to these particular devices can be queried through Open-

low’s port statistics APIs or other technique such as OpenNetMon

27] . 

The processing delay of network functions is obtained from t i s ,

hich is inverse proportional to NF’s capacity. We did not consider

ueueing delay in our testbed implementation because our algo-

ithm ensures that NFBs are not overloaded. We also note here that

here are also some other techniques that are useful for monitoring

rocessing capacities such sFlow [28] . 

.3. Policy controller 

The policy controller is implemented as an application mod-

le in Ryu. We have chosen Ryu because it has a built in integra-

ion for Snort [14] that enables bidirectional communication using

nix domain socket. The controller interacts with NFBs that host

rewalls using OpenFlow protocol. Although frameworks such as

penNF [9] can also be added to enrich functionality of the con-

roller, we note that the scope of this paper is to provide a proof-

f-concept implementation rather than a full-blown testbed. 

In addition to managing NFBs, the controller is also responsi-

le for collecting link latency from Pingmesh Agent and maintain-

ng an in-memory all-pair unidirectional end-to-end latency table

hich is essential to the HOOC scheme. 

. Evaluation 

.1. Evaluation environment and setup 

In order to study the performance of HOOC scheme at scale,

e have extensively evaluated it via ns-3 simulations in a fat-tree



L. Cui et al. / Computer Networks 138 (2018) 108–118 115 

Fig. 6. Comparison of latency of service chain: (a) Average latency for various network scale; (b) Latency of service chain for k = 20 ; (c) Average latency for various length 

of service chain; (d) Latency of service chain for length = 4 . 
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opology with factor k ranged from 4 to 20 meaning that there

re at most 20 0 0 servers and 500 switches in these setups. The

ame controller which we use for testbed has been used during

imulation via ns-3’s OpenFlow module. 

Each NFB in our simulations is modeled with random residual

apacity (number of packets it can process per second) and a set

f network function types that it supports. Therefore, a NFB can

ccept a network function as long as it has sufficient residual ca-

acity and the network function’s type is amongst its support list.

e also note that NFV servers can support any types of network

unctions. All NFBs are deployed in the network, including Open-

low switches, hardware middleboxes and NFV servers. 

In all experiments, traffic flows are randomly generated to

ransmit packets between two servers. Each flow is required to
raverse a sequence of various network functions – the service

hain – before being forwarded to their destination as specified

y policies. In our experiments, the service chains are comprised

f 1 ∼ 4 network functions (normal distribution) including FW, IPS,

E, LB, IDS and (traffic) Monitor [3] . A centralized controller is im-

lemented to collect all network information that is needed, as de-

ned in Section 3 to perform the HOOC scheme. 

Both optimal and greedy approaches for HOOC are imple-

ented. For simplicity, the scheme using SSP to achieve optimal

chedule for a service chain is referred as HOOC-SSP, and the

reedy approach is referred as HOOC-Greedy. 

In order to compare and contrast the performance of HOOC,

e have also implemented a Brute-force approach: By using a

FS (Depth-first search) method, Brute-force approach exhaustively
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Fig. 7. Performance comparison on running time. 
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search all NFBs and all possible service chain allocation paths to

find the one with smallest latency. Brute-force will give the opti-

mal results but it is not suitable for large-scale network as the cost

for searching all permutations will become prohibitively expensive

as the search space grows. 

6.2. Evaluation results 

We first study the performance of HOOC with regard to the la-

tency of service chain as demonstrated in Fig. 6 . Fig. 6 (a) shows the

average latency of all service chain under different network scales

with the factor k of fat-tree ranging from 4 to 20. It shows that on

average HOOC-SSP can always find a service chain path with the

same latency as that of Brute-force, which is optimal. In compari-

son, the HOOC-Greedy approach cloud fall behind both HOOC-SSP

and Brute-force by up to 23%. 

We further show a detailed breakdown view in Fig. 6 (b) that

HOOC-SSP and Brute-force schemes have identical CDF of latency

for all policies for a large scale network when k = 20 . Particu-

larly, they can outperform HOOC-Greedy scheme by 38% at 99 per-

centile. 

Fig. 6 (c) reveals that average latency increases linearly with the

length of service chain when all NFBs have sufficient capacity for

accommodating all network functions. The breakdown of CDF for

latency of service chain whose length is comprised of four network

functions shown in Fig. 6 (d). It unveils that amongst HOOC’s two

algorithms, HOOC-SSP can outperform HOOC-Greedy by 21%. 

Next we study the performance of different schemes in term

of system running time. This is essentially to test the performance

of HOOC controller for its efficiency and scalability in cloud data

center environment. Fig. 7 shows the average total running time

to process a policy increases exponentially for all schemes. Never-

theless, as we can see from this figure that HOOC-Greedy is the

most efficient methods, consuming only 2.8 s and 3.7 s for k = 18

and k = 20 respectively to complete a cycle. This is because HOOC-

Greedy scheme has the smallest search space. On the contrary,

HOOC-SSP can complete one NFs placement cycle for k = 18 and

k = 20 at 10 s and 23 s respectively, and Brute-force takes up to

149 s and 232 s for k = 18 and k = 20 respectively. The results in-

dicate that HOOC-SSP and HOOC-Greedy can be nearly 9 and 61

times faster than Brute-force. Among HOOC-SSP and HOOC-Greedy,

the latter is 5 times more efficient that the former one. 

As we have already presented in Section 4 that HOOC-SSP is

comprised of constructing a service chain network and finding
hortest service chain paths. Fig. 7 also demonstrates that 63% of

OOC-SSP time are consumed on constructing the service chain

etwork, whereas finding shortest service chain paths merely ac-

ounts for 37% of the time. Clearly, this indicates that in order to

urther improve the efficiency of HOOC-SSP whilst retaining opti-

ality, we should investigate into optimizing the efficiency of con-

tructing service chain network. We will leave this as part of our

uture work. However, Fig. 7 demonstrates that when efficiency be-

omes the foremost consideration HOOC-Greedy can strike a good

alance between efficiency and its approximation to the optimal. 

. Related works 

The configuration of network connectivity is governed by net-

ork policies. When deployed, a policy is translated and imple-

ented as one or more packet processing rules in a diverse range

f “middleboxes” (MBs) such as firewalls (e.g. ALLOW TCP 80), load

alancers, Intrusion Detection and Prevention Systems (IDS/IPS),

nd application acceleration boxes [29] . With network programma-

ility enabled by SDN and NFV technologies, such rules can also

e implemented outside of traditional “middleboxes” in network

witches [30] as well as end-hosts [31] . One of the design require-

ents for today’s cloud data centres is to support the insertion of

ew middleboxes [32] . 

Recent studies have focused primarily on exploiting SDN and

FV to ensure correct policy compositions and enforcement [2,7,8] ,

onsolidating policy rules to end hosts [31] and network switches

33] , or providing a framework for migrating middleboxes states

9] , or policy-aware application placement to incorporate policy re-

uirements [16,29,34] . 

Nevertheless, this body of work has only partially addressed the

roblem since, with SDN and NFV, both the number of entities that

enerate and implement policies independently and dynamically

ave increased manyfold. Given the large variety of network func-

ion entities in terms of both types and locations, inappropriate

elections not only eliminate the advantage of SDN and NFV but

ould also cause severe consequences including data centre outage.

Many data centre applications are sensitive to latencies. One

ource of latency is network congestion as throughput-intensive

pplications causes queueing at switches that delays traffic

rom latency-sensitive applications. Existing techniques to combat

ueueing are to prioritise flows such that packets from latency-

ensitive flows can “jump” the queue [11] ; to centrally schedule all

ows for every server so no flows will have to queue [35] ; or to

ace end host packets to achieve guaranteed bandwidth for guar-

nteed queueing [10] . 

These techniques assume shortest path forwarding. Today’s data

entre fabrics have rich path-redundancy in nature, non-shortest

aths can be exploited to use path redundancy and spare capac-

ty for mitigating network congestion [36] . As policy rules chaining

an effectively shape the network traffic (packets need to follow

olicy path), they can be chained over non-shortest paths to mit-

gate congestion-led queueing since propagation delay on physical

inks are predictable and smaller than queueing delay. 

A primary study on heterogeneous network function boxes en-

ironment is provided in our previous work [37] and a HOPE

cheme is proposed. However, HOOC is different with previous

ork in the following ways: Firstly, a thorough test-bed experi-

ents are also performed to show the heterogeneity among differ-

nt NFB implementations; Secondly, the service chain re-ordering

s considered, where NFs can be opportunistically re-ordered for

mproving performance. Thirdly, The detailed implementation of

he Greedy version is introduced in this paper; Finally, a proof-of-

oncept testbed and some issues of implementations in practice

re discussed. 
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. Conclusion 

Network policies and service chains are important for the se-

urity and reliability of data center network today. In practice,

etwork functions of policies can be deployed in different envi-

onment, e.g., OpenFlow switches, hardware middleboxes and NFV

ervers. Such heterogeneous environment for policy allocation re-

ain unexplored in previous research works. In this paper, we

tudy the Heterogeneous Policy Enforcement Problem with a fo-

us on the latency. We first prove that the optimization problem is

P-Hard, then simplified the problem and proposed HOOC, which

s proved to be able to find the optimal service chain path for each

olicy. Extensive simulation results and comparisons with Brute-

orce approach have demonstrated high effectiveness and optimal-

ty of HOOC. The future direction of this work will be to investigate

fficient service chain network construction. 
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