
Heterogeneous Network Policy Enforcement

in Data Centers

Lin Cui∗, Fung Po Tso†, Weijia Jia‡,
∗Department of Computer Science, Jinan University, Guangzhou, China

†Department of Computer Science, Loughborough University, UK
‡Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai China.

Email: tcuilin@jnu.edu.cn; f.p.tso@lboro.ac.uk; jia-wj@cs.sjtu.edu.cn

Abstract—With the emergence of network function virtualiza-
tion, data center start to deploy a variety of network function
boxes (NFBs) in both physical and virtual form factors in order
to combines inherent efficiency offered by physical NFBs with the
agility and flexibility of virtual ones. However, existing schemes
are limited to exclusively consider physical or virtual NFBs,
which may reduce the performance efficiency of services running
atop. In this paper, we propose a Heterogeneous NetwOrk Policy
Enforcement scheme (HOPE) to overcome these challenges. An
efficient algorithm that can closely approximate optimal latency-
wise NF service chaining is proposed. The experimental results
have also shown that HOPE can outperform greedy algorithm
by 25% in terms of network latency and is 56x more efficient
than naive depth-first search algorithm.

I. INTRODUCTION

Cloud data centers deploy a great variety of network

functions (NFs), such as firewall (FW), intrusion preven-

tion/detection system (IP/DS), deep packet inspection (DPI),

load balancer (LB), and etc., at various points in the network

topology to safeguard networks and/or improve application

performance [1]. Each NF is responsible for specific treatment

of received packets, including forwarding, dropping, rate-

limiting, inspecting and so on. Various permutations of NFs

form an ordered chain, i.e., service chain [2], which is defined

by network policy [3] and must be applied to packets.

Nowadays, NFs are either embedded in purpose-built propri-

etary hardware middleboxes or run as virtual instances on top

of commodity servers through network function virtualization

(NFV). We term both hardware middleboxes and virtualized

servers for NFs as Network Function Boxes (NFBs). Physical

NFBs are more efficient because they are built with dedicate

hardware for optimizing the performance of specific functions

but are proprietary and hence less extensible. On the other

hand, virtualized NFBs have the agility for rapid on-demand

deployment and programmability for software automation but

they are less efficient due to virtualization overhead, resource

sharing, and general-purpose hardware they sit atop [4]. Obvi-

ously, a NF can be independently allocated to different NFBs

in the network or collocated with other NFs within a single

NFB [2]. In addition to hardware middleboxes and general-

purpose NFV servers, some simple NFs such as firewall and

NAT can also be efficiently implemented in SDN switches [5].

Clearly, these distinctively different NFBs present an enor-

mous opportunity for data centers by adopting mixture of

both form factors in order to captialize on both efficiency and

flexibility [2]. Nevertheless, coming with this heterogeneous

are significant challenges on the correct implementation of net-

work policies:(1) Support for deployment of network policies

is limited exclusively to physical or virtualized NFBs, there

is no tools for supporting mixture of both [3];(2) Migration

of virtual instances of NFs will involve change of end-to-

end path that will break legacy VLAN partition [6]; (3) The

performance of virtual NFs are subject to the compute and

storage capacities of commodity servers. This will lead to

unpredicted performance such as end-to-end latency [7].

While the first and second challenges can be partially tack-

led with small tweaks on top of our previous work Sync [6],

the third challenge remains the most prominent and needs

solving urgently because data centers host applications that

are largely latency-sensitive and are prone to unpredictable

slowdown along the end-to-end links [8]. Existing works only

combat latency in network switches and/or protocols running

atop and overlook latency arises from NFBs [9].

In this paper, we propose a Heterogeneous NetwOrk Policy

Enforcement scheme (HOPE) which meets this requirement.

Our experimental evaluation demonstrates that HOPE can

achieve optimal placement of NFs amongst heterogeneous

NFBs.

The remainder of this paper is structured as follows. Sec-

tion II describes the problem formulation and the model of

HOPE. An efficient greedy scheme is proposed in Section III,

followed by the performance evaluation of HOPE in Sec-

tion IV. Section V concludes the paper.

II. PROBLEM MODELING

A. Overview

We consider a heterogeneous environment where NFs can

be implemented different kinds of NFBs: (1) Hardware mid-

dbleboxes are vendor specific, proprietary boxes for providing

specific NFs. They are optimized for performance and less ex-

tensible. (2) NFV servers are virtualized that can run multiple,

and theoretically, any types of virtual NFs. (3) Some simple

NFs can also be implemented on switches or routers such

as VPN, simple firewalls, LBs. They are amongst hardware

middleboxes. However, SDN also allow us to exploit the

OpenFlow switches to increase the performance of service

chain by installing some rules (i.e., NF) to their tables [5].
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We anticipate that the heterogeneous implementation of NFs

will exist for the foreseeable future.

Denote B = {b1, b2, . . .} to be the set of all NFBs in a

data center. For a NFB bi, bi.capacity denotes the maximum

processing capability of bi, measuring in number of packets

per second (pps), e.g., 3800 pps [10]. bi.typeset specifies the

set of supported NF types on bi. NFV servers theoretically

support all types of NF, while hardware MBs and switches can

only support one or few types of NFs. We assume that memory

space of NFBs are enough to accommodate states information

of all NFs, i.e., bottleneck is the processing capacity.

Let N = {n1, n2, . . .} be the set of all NF instances in data

center. For a NF ni, the property ni.type defines the function

of ni, e.g., IP/DS, LB, or FW. ni.capacity is essentially the

processing capacity requirement of ni in pps. ni.location
is the NFB that currently hosts ni. This set of NFs in N

may belong to different applications, and are deployed and

configured by a centralized Policy Controller [11].

Traffic in data center is largely flow-based [12]. In light

of this, we define data center traffic as F = {f1, f2, . . .}.
For each flow fi ∈ F, fi.src and fi.dst specify the source

and destination VMs of fi respectively, e.g., fi.src = v1 and

fi.dst = v2. The data rate of fi.rate is represented by data

exchanged from VM fi.src to VM fi.dst per time unit1.

The set of network policies is P, which can be defined

by administrators. For each fi ∈ F, there is a policy pi.
pi.chain defines the sequence of NFB types that all flows

matching policy pi should traverse in order, e.g., pi.chain =
{n1, n2, n3}, where, for example, n1.type = FW,n2.type =
IPS, n3.type = Proxy. Specially, pi = ∅ means fi is not

governed by any policies. pi.len is the length of pi.chain.

pi.chain must be assigned to appropriate NFBs beforehand,

and we assume there are enough NFBs to accommodate all

required NFs. Since we consider heterogeneous NFs, there

are various possible locations for each NF in pi.chain. For

example, in the above example of pi, n1.location could be

a core router, n2.location could be a hardware NFB, and

n3.location could be a NFV server. An example of service

chain is given in Figure 1.

B. Delays with network functions

There are many metrics to measure the efficiency of NF

placement (service function chaining) for a policy such as

communication cost [6][14]. In this paper, we mainly focus

on the latency of a policy flow.

The total delay of a flow includes transmission delay among

adjacent NFs and processing delay of NFs in the service chain.

1) Transmission delays: In order to steer traffic to the

service chain, either Policy Based Routing (PBR) or VLAN

stitching can be used in data centers [2]. For either case, the

intended solution in this paper should be unaware of these

schemes and is general and applicable to the schemes. So, we

do not consider the detailed routing between two NFBs.

1There are a handful of research literature, e.g., [13], about deriving real
time traffic matrices in data center networks.
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Fig. 1: Service Chain Example: FW → LB → IPS →
Monitor

Since, in production data centers, the transmission delay

of links in its path are relatively stable and can be easily

obtained/estimated through large-scale measurement [15], we

assume the transmission delay between two NFs is known

and can be obtained through the controller. The controller

will maintain a transmission delay matrix D, D(ni, nj) =
D(nj , ni) is the delay between ni an nj . D(ni, nj) = −1 if

the delay is unknown or they are unreachable.

2) Processing delays of network functions: We define ser-

vice time tis as the time that ni takes to process a packet.

Since many NFs such as firewalls and load balancers only

process packet headers of which sizes are fixed, ignoring

variable length data payloads. Thus, the service time tis is a

constant [16]. Specially, considering the processing capacity

ni.capacity of ni, t
i
s = 1/ni.capacity.

C. Heterogeneous network policy enforcement problem

The expected delay for flow constrained by policy pi is:

T (pi) = D(fi.src, pi.chain[1])

+

pi.len−1∑

j=1

(D(pi.chain[j], pi.chain[j + 1]) + tp(pi.chain[j]))

+D(pi.chain[pi.len], fi.dst)
(1)

We aims to reduce the total delay by efficiently placing NFs

onto heterogeneous NFBs while strictly adhering to network

policies. Let A be an allocation of NFs. A(ni) is the NFB

which hosts ni, and A(bj) is the set of NFs hosted by bj .

The Heterogeneous Network Policy Enforcement problem is

defined as follows:

Definition 1. Given the set of F, P, NFBs B and D, we need to

find an appropriate allocation of NFs A, which that minimizes

the total expected end-to-end delays of the network:

min
∑

fi∈F

T (pi)

s.t. A(ni) 6= ∅ && |A(ni)| = 1, ∀ni ∈ pk.chain, ∀pk ∈ P
∑

ni∈A(bj)
ni.capacity < bj .capacity, ∀bj ∈ B

(2)
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Fig. 2: Example of service chain network for flow f and l = 3.

The first constraint ensure that NFs of all service chains

are appropriately accommodated by one NFB. The second

constraint is the capacity constraint of all NFBs. It can be

easily proven that the above problem is NP-Hard, by reducing

from the Multiple Knapsack Problem (MKP).

III. HETEROGENEOUS POLICY ENFORCEMENT

In this section, we introduce HOPE, a Heterogeneous

NetwOrk Policy Enforcement scheme.

A. Service chain network

We consider an online solution which process one service

chain at a time when a new policy/flow requirement arrives.

Suppose a flow fi, constrained by pi, arrives and we need to

find appropriate NFBs to accommodate all NFs in pi.chain
with an objective to minimize its total expected delay T (pi).
We define its Service Chain Network G = (V,E), which is

a pi.len-tier directed graph. Nodes in the jth tier are NFBs

defined by Bj :

Bj = {bk|pi.chain[j] ∈ bk.typeset and
∑

n∈A(bk)

n.capacity + capacity ≤ bk.capacity, ∀bk ∈ B}

(3)

For a node x in jth (j ≤ pi.len− 1) tier and y in (j + 1)th
tier, there is a directed edge from x to y if y is reachable from

x and weight of the edge is D(x, y)+ tp(y). It is possible that

both x and y are the same NFB. In this case, D(x, y) = 0.

Flow originates from the source (fi.src) and terminate at the

sink (fi.dst). For a node x in 1st tier, the weight of edges from

fi.src to x is D(fi.src, x)+tp(s). For a node y in lth tier, the

weight of the directed edges from y to fi.dst is D(y, fi.dst).
Figure 2 shows an example of service chain network.

B. Shortest service chain path

Clearly, the route with smallest expected latency for a flow

is the shortest path from source to sink, which we referred

as ssp (Shortest service chain path). However, since nodes

in different tiers of the service chain network can be the

same NFB with limited capacity, we can not simply re-use

traditional shortest first path algorithms, e.g., Dijkstra, Floyd.

The difficulty here is that two nodes that belong to different

tiers in the service chain network, say x and y, may be in the

same NFB and share the same capacity. If we assign fi to x,

it may saturate the NFB such that y can not further accept

fi. In this case, we call them conflict nodes. A path from the

source will be blocked by the latter one of the conflict nodes.

Algorithm 1 SSP:Shortest Service Chain Path

Input: Service chain Network G(V,E), fi
Output: shortest service chain path to fi.dst

1: S ← ∅
2: d(v)←∞, ∀v ∈ V
3: prev[v]← undefined, ∀v ∈ V
4: d(f.src)← 0
5: while S 6= V do

6: u← argminv∈V \S d(v)
7: if u == fi.dst then

8: break

9: end if

10: S ← S ∩ {u}
11: nk ← NF in pi.chain that will be placed in u
12: for each neighbor v of u do

13: if d(v) > d(u) +D(u, v) then

14: if v 6∈ getPath(prev, u) or∑
nj∈A(v) nj .capacity + nk.capacity ≤ v.capacity

then

15: d(v)← d(u) +D(u, v)
16: prev[v]← u
17: end if

18: end if

19: end for

20: end while

21: return getPath(prev, fi.dst)

Hence, we design the SSP (Shortest Service Chain Path) to

find the shortest path in this situation, as shown in Algorithm 1.

Conflict nodes are handled in line 14. The shortest service

chain path are maintained in prev and can be obtained through

function getPath(). We can easily derived that Algorithm 1

can always output a shortest service chain path. Due to page

limitation, detailed proof is not shown here.

IV. EVALUATION

We have evaluated the performance of HOPE through exten-

sive simulations in a fat-tree data center topology with factor

k ranged from 4 to 20 meaning that there are at most 2000

servers and 500 switches in these setups. Each NFB in our

simulations is modeled with random residual capacity (number

of packets it can process per second) and a set of NF types

that it supports. NFBs are implemented through OpenFlow

switches, hardware middleboxes or NFV servers. Each service

chain is comprised of 1∼4 NFs including FW, IPS, RE, LB and

(traffic) Monitor [2]. A centralized controller is implemented

to collect all network information that is needed, as defined

in Section II to perform the HOPE scheme. To compare the

performance of HOPE, we have also implemented two other

approaches: Greedy, which always tries to assign NFBs with

the lowest estimated latency, and Brute-force, which gives the

optimal results but is not suitable for large-scale network.

Figure 3a shows the average latency of all service chain

under different network scales with the factor k of fat-tree

ranging from 4 to 20. It shows that on average HOPE can

3



4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

Factor K

A
v
e

ra
g

e
 L

a
te

n
c
y
 o

f 
S

e
rv

ic
e

 C
h

a
in

 (
m

s
)

 

 

HOPE

Greedy

BruteForce

(a) Average latency for various network
scale

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency of service chain (ms)

C
D

F

 

 

HOPE

Greedy

BruteForce

(b) Latency of service chain for k = 20

1 2 3 4
0

2

4

6

8

10

12

14

16

Length of service chain

A
v
e
ra

g
e
 l
a
te

n
c
y
 o

f 
s
e
rv

ic
e
 c

h
a
in

 (
m

s
)

 

 

HOPE

Greedy

BruteForce

(c) Average latency for various length of
service chain

4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Factor K

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
)

 

 

HOPE

Greedy

BruteForce

(d) Average running time

Fig. 3: Performance Comparison

always find a service chain path with the same latency as

Brute-force, which is optimal. The Greedy approach can

deviate from both HOPE and Brute-force by up to 23%.

Figure 3b shows that HOPE and Brute-force schemes have

identical CDF of latency for all policies for a large scale net-

work when k = 20. Particularly, they can outperform Greedy

scheme by 38% at 99 percentile. Figure 3c reveals that average

latency increase linearly with the length of service chain when

all NFBs have sufficient capacity for accommodating all NFs.

Figure 3d shows the average total running time to process a

policy increases exponentially for all schemes. Greedy is the

fastest methods, consuming only 50ms and 63ms for k = 18
and k = 20 respectively to complete a cycle. On the contrary,

HOPE can complete within 1s for most scenarios, and Brute-

force is much more slower. The results indicate that HOPE

can be nearly 9 times slower as compared to Greedy but is 56

times faster than Brute-force. However, given the remarkable

performance gain of HOPE over Greedy, we believe this trade-

off in system running time is acceptable.

V. CONCLUSION

Network policies and service chains are important for the

security and reliability of data centers. NFs of policies can be

deployed in different environment, e.g., OpenFlow switches,

hardware middleboxes and NFV servers. Such heterogeneous

environment for policy allocation remain unexplored in previ-

ous works. In this paper, we study the Heterogeneous Policy

Enforcement Problem with a focus on the latency. We pro-

posed HOPE, which can find the optimal service chain path for

each policy. Extensive simulation results have demonstrated

the effectiveness and optimality of HOPE.
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