
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Mystique: a fine-grained and transparent congestion control enforcement
scheme

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

IEEE

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

LICENCE

All Rights Reserved

REPOSITORY RECORD

Zhang, Yuxiang, Lin Cui, Fung Po Tso, Quanlong Guan, Weijia Jia, and Jipeng Zhou. 2019. “Mystique: A Fine-
grained and Transparent Congestion Control Enforcement Scheme”. figshare.
https://hdl.handle.net/2134/9757949.v1.

https://lboro.figshare.com/

1

Mystique: A Fine-grained and Transparent
Congestion Control Enforcement Scheme

Yuxiang Zhang, Lin Cui, Member, IEEE, Fung Po Tso, Member, IEEE,
Quanlong Guan, Weijia Jia, Senior Member, IEEE, and Jipeng Zhou

Abstract—TCP congestion control is a vital component for the
latency of Web services. In practice, a single congestion control
mechanism is often used to handle all TCP connections on a Web
server, e.g., Cubic for Linux by default. Considering complex and
ever-changing networking environment, the default congestion
control may not always be the most suitable one. Adjusting
congestion control to meet different networking scenarios usually
requires modification of TCP stacks on a server. This is difficult,
if not impossible, due to various operating system and application
configurations on production servers. In this paper, we propose
Mystique, a light-weight, flexible, and dynamic congestion control
switching scheme that allows network or server administrators
to deploy any congestion control schemes transparently without
modifying existing TCP stacks on servers. We have implemented
Mystique in Open vSwitch (OVS) and conducted extensive test-
bed experiments in both public and private cloud environments.
Experiment results have demonstrated that Mystique is able
to effectively adapt to varying network conditions, and can
always employ the most suitable congestion control for each TCP
connection. More specifically, Mystique can significantly reduce
latency by 18.13% on average when compared with individual
congestion controls.

Index Terms—Web Service, TCP, Congestion Control, Transfer
Completion Time

I. INTRODUCTION

Recent years have seen many Web applications moved
into cloud datacenters to take advantage of the economy of
scale. As the Web applications are becoming more interactive,
service providers and users have become far more sensitive
to network performance. This is because any increase in
network latency always hurt experience and hence providers’
revenue. For example, Google quantifies that an additional
400ms latency in searches leads to 0.7% fewer searches per
user [1] and Amazon estimates that every 100ms increase
in latency cuts profit by 1% [2]. Hence, reducing latency,
especially the latency between datacenters and users, is of
profound importance for providers.

To reduce network latency, administrators (or operators)
opt to use network appliances such as TCP proxies and

Yuxiang Zhang and Lin Cui are with the Department of Computer Science,
Jinan University, Guangzhou, China and the State Key Laboratory of Internet
of Things for Smart City, FST, University of Macau, Macau SAR, China,
Email: samuelzyx0924@gmail.com, tcuilin@jnu.edu.cn

Fung Po Tso is with the Department of Computer Science, Loughborough
University. Email: p.tso@lboro.ac.uk.

Quanlong Guan and Jipeng Zhou are with the Department of Com-
puter Science, Jinan University, Guangzhou, China. Email: gql@jnu.edu.cn,
tjpzhou@jnu.edu.cn.

Weijia Jia is with the State Key Laboratory of Internet of Things for Smart
City, FST, University of Macau, Macau SAR, China. Email: jiawj@umac.mo.

Corresponding authors: Lin Cui and Weijia Jia

WAN optimizers [3] [4]. However, these appliances usually
have fixed capacity and thus are challenged with scalability
issues when faced with increasing traffic volume [3] [5]. For
example, TCP proxies split a TCP connection into several sub-
connections, breaking the TCP end-to-end semantics. This be-
havior potentially violates the sequential processing pipelines
which applications probably receive the acknowledgement for
still transmitting packets [6] [7]. Similarly, WAN optimizers
introduce additional data transfer complexity. They compress
data at senders for faster transmission. This means additional
decompression appliances are required in ISPs or other corre-
sponding places [6].

With these limitations, many researchers chose to intrin-
sically tackle network latency from TCP congestion control
for improving service quality since almost all Web services
rely on TCP for service delivery. As a result, a number
of congestion control (CC) algorithms have been proposed,
including Reno [8], Cubic [9] and BBR [10]. Nevertheless, our
extensive evaluations have shown that none of the algorithms
can constantly outperform one another in all scenarios (see
Section II). In fact, they only reach their peak performance
when some specific loss ratio and network delay1 conditions
are met, and degrade dramatically when these change. The
degradation of performance caused by inappropriate CCs can
lead to decreasing throughput and increasing latency.

On the other hand, many Web servers2 in cloud data-
centers have different operating systems and configurations,
e.g., Linux or Windows server with different kernel versions
and various default CCs. Considering such vast diversity and
quantities of Web servers, adjusting congestion controls (e.g.,
deploying new advanced CCs) is a difficult, if not impossible,
task for administrators [7] [11]. Worse still, administrators
sometimes are simply not allowed to modify servers’ network
stacks directly due to security and SLA constraints.

Motivated by above challenges, we ask: Can we design
a transparent congestion control switching scheme that can
always employ the most suitable congestion control for each
TCP connection, adapting to network diversities and dynam-
ics, without modifying TCP stacks of Web servers?

In this paper, inspired by the works in [7] and [11], we
propose Mystique, a resilient congestion control enforcement

1In this paper, latency represents the period of time starting from when
service is requested lasting until responses are completely received, while
delay means the time taken for a packet to be transmitted across a network
from source to destination and RTT indicates the length of time from the
packet sent to network to the corresponding acknowledgement arrived.

2Those Web servers can be either physical servers or VMs in cloud
datacenters. For consistency, we use “Web server” to refer both cases.

2

without modifying TCP stacks on servers. Advanced TCP
congestion controls can be easily implemented by using APIs
provided by Mystique. Mystique can effectively adapt to net-
work conditions and dynamically employ the most suitable
congestion control for each connection according to rules
specified by administrators.

In summary, the main contributions of this paper are three-
fold [12]:

1) We conduct extensive studies to show that no single
congestion control suits all network conditions. We
also provide a recommendation of the most suitable
congestion control for certain network conditions.

2) We propose Mystique and present its detailed design
working examples. Mystique is comprised of a State
Module that monitors flow states and a Enforce Module
that transparently force Web servers to comply with its
decision.

3) We present the prototype implementation of Mystique
on top of Open vSwitch (OVS). Extensive experiment
results show that Mystique works effectively, reduc-
ing latency by 18.13% on average compared to other
schemes.

The remainder of this paper is organized as follows. We
present our motivations in Section II. Then we describe the
design of Mystique in Section III, followed by implementation
details in Section IV. The evaluation of Mystique in production
datacenter environments and Mininet [13] based simulation
is presented in Section V. Related works are surveyed in
Section VI. Finally we conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATIONS

A. Background

Latency for Web service is closely linked to revenue and
profit. Large latency degrades quality of service (QoS), result-
ing in poor customer experience and hence revenue loss [2]
[14]. In light of this, it is always in service providers’ primary
interest to minimize their network latency. Many service
providers use network functions such as TCP proxies and
WAN optimizers for reducing latency [3] [4]. However, their
scalability is of a great challenge, while TCP proxies go
against TCP end-to-end semantics and WAN optimizers add
additional compression and decompression complexity.

On the other hand, congestion control is known to have
significant impact on network performance. As a result, many
congestion control algorithms have been proposed and stud-
ied [10] [15] [16] [17] [18]. Some of these schemes are delay-
based, e.g., Vegas and Hybla, which measure the difference
between expected and actual RTT, and recognize the difference
exceeding a threshold as the congestion signal. Whereas, some
CCs, e.g., Reno and Cubic, are loss-based proposals, which
consider packet loss as the congestion signal. Furthermore,
Illinois is a compound scheme which treats both loss and
RTT difference as the congestion signal. Although above
schemes use varied congestion signals, they all follow the
AIMD (Additive Increase Multiplicative Decrease) rule. On
the contrary, BBR constantly estimates BDP (bandwidth delay
product) and adjusts its sending rate based on the estimation.

Congestion Control Algorithms

Cubic Reno BBR Hybla Illinois Vegas

A
v
e
ra

g
e
 T

p
u

t
(M

b
it

s
/s

)

0

2

4

6

8
Pri-backend to BJ

Pri-backend to NY

Fig. 1. Performance comparison with different congestion controls

Time (second)

50 100 150 200 250 300 350 400 450 500 550 600

R
T

T
 (

m
s
)

0

100

200

300

400

500
Pri-backend to BJ

Pri-backend to NY

Fig. 2. RTT measured from Pri-backend to BJ and NY respectively

However, recent investigations reveal that the performance
of CCs depends on instantaneous network conditions [18] [19]
[20]. In the meantime, CCs are usually determined by TCP
stack on a server or changed on per-socket basis determined
by source code implementation of applications3. Furthermore,
service providers usually deploy a range of different Web
servers for fault tolerance and security. These servers run
different operating systems (e.g., Linux and Windows) and are
configured with different congestion controls. On the other
hand, in multi-tenants cloud datacenters, network operators
may be prohibited from upgrading TCP stacks on particular
Web servers for security issues. Clearly, manual fine-tuning
congestion control on every server for each TCP connection
is impractical. It is necessary to provide a mechanism which
allows drop-in replacement of TCP stacks for per-flow (as
oppose to per-server) level of granularity, giving network
administrator sufficient control of network resource whilst
improving latency for Web services.

B. Problem Exploration

To better understand the performance diversity of different
congestion controls under varying scenarios, we carried out
several testbed and simulation experiments to investigate such
performance diversity. First, we triggered 50MB file transfers
from a Web server named Pri-backend (in Guangzhou) to two
clients in Beijing (BJ) and New York (NY)4, respectively. We
measured the performance of six different CCs that are avail-
able in Linux kernel. The throughput results in Figure 1 show
that performance of different congestion controls varies under
different network conditions. For example, Reno performs
better than Cubic for the data transfer to BJ, but performs
worse in the scenario transmitting to NY. This is because the
network conditions are very different for the two connections
as reflected in their RTTs. Figure 2 shows even though both

3CC algorithms can be changed through system call setsockopt in Linux.
4Pri-backend is a Web server deployed in our campus datacenter. BJ and NY

are two client machines in AWS cloud datacenter. The detailed information
and configuration about those machines can are in Table IV and Table V.

3

Delay (ms)

50 100 150 200 250 300

A
v

e
ra

g
e

 T
p

u
t(

M
b

it
s

/s
).

2

4

8

16

32

64

128

256

Cubic Reno BBR Hybla Illinois Vegas

(a) Throughput of varied congestion control under
the scenarios of loss=1%

Loss Ratio (%)

0 1 2 3

A
v

e
ra

g
e

 T
p

u
t(

M
b

it
s

/s
).

1

2

4

8

16

32

64
Cubic Reno BBR Hybla Illinois Vegas

(b) Throughput of varied congestion control under
the scenarios with delay = 300ms

RTT (ms)

50 100 150 200 250 300

L
o

s
s
 R

a
ti
o

0

1

2

3

Hybla BBR

(c) The most suitable congestion control

Fig. 3. The performance of different congestion controls under varied scenarios

BJ and NY connect to the same server Pri-backend, Pri-
backend → NY has almost 10X larger RTT than that of Pri-
backend → BJ. Particularly, RTTs change dynamically for
both connections. This demonstrates that the most suitable and
efficient CC can be changed with times even for a single TCP
connection.

Next, we conducted Mininet [13] based experiments to
quantify the performance variation of CCs under different net-
work conditions. The network contains two servers connected
to two switches, respectively, in a line topology. Bandwidth of
all links are set to be 1Gbps. Long-lived flows generated by
iPerf [21] are used to evaluate performance of different CCs.

1) Observation with varying delay: Delay variation is com-
mon on the Internet since routes for packets are changing and
end-hosts adopt delayed ACK technique. Here, the loss ratio
of the link between the pair of servers is set to be 1% with
delay ranging from 50ms to 300ms. Results in Figure 3(a)
show that BBR has the best performance in most scenarios,
while Hybla [22] outperforms all other schemes at 200ms.
BBR constantly estimates the network capacity and adjust its
sending rate based on the measured BDP [10]. Therefore,
packet loss would not affect its sending rate which keeps
its substantial performance [23]. Hybla uses relatively large
congestion window to counteract the effects of long RTT
and packet losses so that is able to assure a satisfactory
transmission rate [22]. And the other schemes, e.g., Illinois
and Vegas, are slightly affected by the RTT since the feedbacks
of these CCs depend on the network delay, which reduces the
congestion window growth rate and results in performance
degradation [22] [24].

Observation 1. The performance of TCP congestion control
varies under different network delays with constant loss ratio.

2) Observation with varying loss ratio: In addition to delay
variation, loss ratio also varies in a real network. To quantify
its impact, we set the delay between the pair of servers to be
300ms with loss ratio ranging from 0% to 3%. Results in Fig-
ure 3(b) show that all TCP variants have different performance
under scenarios with different loss ratio. Specially, Figure 3(b)
shows that Hybla can give a satisfactory performance in an
ideal channel since it removes its dependence on RTT [22].
BBR performs the best due to its BDP based mechanism. And
other schemes reduce their congestion windows when packet
loss is detected, and eventually impair their performance.

Observation 2. The performance of TCP congestion control

TABLE I
CONGESTION CONTROLS RECOMMENDATION

CC Target scenarios Characteristics

Hybla No packet loss
Remove the performance dependence on

RTT; Effective in counteracting the
effects of long RTT and losses

Illinois RTT ≤ 50ms &
loss exists

Recognize loss as congestion signal, adjust
sending rate based on RTT variance

BBR RTT ≥ 50ms &
loss exists

Compute sending rate based on estimated
BDP, not sensitive to packet loss

varies under different loss ratios with constant delay.

3) Observation on the most suitable congestion control:
The best performing congestion control is also obtained (in-
dicated with different colors in Figure 3(c)) for all scenarios
with delay ranging from 50ms to 300ms and loss ratio ranging
from 0% to 3% respectively. Hybla performs well in idle
environment and BBR is good at handling loss albeit not being
a loss-based scheme. This further confirms our analysis above.
Particularly, results demonstrate that Hybla could achieve sat-
isfactory performance in ideal channel and obtain comparable
performance in long RTT and lossy scenario [9] [22]. Further,
since BBR focuses on estimating maximal available network
capacity rather than the packet loss, it is very suitable for
deployment in lossy network [10] [23].

Observation 3. No single congestion control suits all network
conditions.

Remarks: Based on above observations and analysis of the
behavior of each CC, we summarize a recommendation in
Table I. Generally, BBR is suitable for the scenario that packet
losses exist while Hybla can be chosen for ideal network
with no packet loss. However, according to Figure 1, Illinois
outperforms BBR when RTT is less than 50ms and loss exists.
This is because the decrease factor of Illinois keeps small
when the RTT is relatively small. Therefore, Illinois would
not degrade its performance in a scenario which has packet
loss and short RTT. Hence, we choose Illinois as the most
suitable congestion control when RTT is less than 50ms and
loss exists.

C. Design Goals

We aim to design a transparent platform allowing network
administrators to dynamically deploy and adjust congestion
controls in a fine-grained granularity without modifying TCP

4

Algorithm 1 Mystique Overall Algorithm
1: for each incoming packet do
2: if belongs to client → server then
3: if SYN packet then
4: Create flow entry
5: end if
6: else if FIN packet then
7: Remove flow entry
8: else if ACK packet then
9: Update congestion states # e.g., max_bw, min_rtt

10: if Loss signal then
11: Retransmit loss packet
12: end if
13: CC ← CC_switching(states)
14: Compute new cwnd based on CC
15: Enforce cwnd
16: else
17: if DATA packet then # belongs to server→client
18: Record packet states # e.g., una, nxt
19: Store packet
20: end if
21: end if
22: end for

stacks of Web servers. This goal can be translated into three
properties:

1) Transparency. Our scheme should allow network ad-
ministrators or operators to enforce advanced congestion
controls without touching TCP stacks of servers. En-
forcement of our scheme should be transparent to both
Web servers and clients. This is important in untrusted
public cloud environments or in cases where servers
cannot be updated due to security issues [11] [25].

2) Flexibility. Our scheme should allow different conges-
tion controls to be applied on a per-flow basis and select
the most suitable congestion control according to current
network status. This is useful since each congestion
control has its own deficiency and suitable scenarios.
Allowing adjusting CCs on a per-flow basis can enhance
flexibility and performance.

3) Light-weight. While the entire TCP stack may seem
complicated and prone to high overhead, the congestion
control is relatively light-weight to implement. Our
scheme should consume less resource as possible and
be a feasible solution for real world network.

We will show how Mystique achieves the first two objectives
in the next section. To achieve the last goal, Mystique needs
to apply specific techniques to handle packets processing, e.g.,
Read-Copy-Update hash tables and NIC offloading, which are
discussed in Section IV.

III. Mystique DESIGN

A. Design Overview

Mystique is a resilient congestion control enforcement plat-
form without modification on Web servers. Mystique monitors

Fig. 4. Mystique Implementation Overview

Web

Server

Mystique Client

Record State
(Section III-B)

Buffer Packet
(Section III-B)

Extract State
(Section III-B)

Loss?

CC Switching
(Section III-E)

Compute cwnd
(Section III-C)

Enforce cwnd
(Section III-D)

DATA DATA

ACK

ACK

Retrans

Fig. 5. Mystique’s processes of Data packets and ACK packets

all flows in/out Web servers and obtains corresponding conges-
tion states. With these states, Mystique switches and deploys
the most suitable congestion control by modifying the receive
window.

In this section, without loss of generality, we assume
that Web servers run loss-based congestion control which is
popular in today’s operating systems. This is because in Linux
kernels 2.6 and above, as well as Windows 10, Windows
Server 2016 and later versions, Cubic is the default CC. For
Unix OS, Cubic and Reno are usually configured as the default
CC [26]. Thus, loss-based CCs, e.g., Cubic and Reno, are
supposed to be run on most Web servers since Unix-like
(including Linux) and Windows Server are dominant Web
server operating systems [27].

Figure 4 shows the high-level overview of Mystique’s
implementation based on Open vSwitch (OVS) [28]. The
overall operations of Mystique and processing on TCP data
and acknowledgement packets are shown in Algorithm 1
and Figure 5 respectively. When a data packet from a Web
server is pushed down to network stacks, it is intercepted by
Mystique.5 The sequence number and sending timestamp are
recorded. The packet is sent to the client immediately when a
copy is buffered by the Buffer Management module. When
ACKs from clients reach Mystique, State Monitor extracts
congestion states from each ACK and releases corresponding
buffer simultaneously (Section III-B). Upon receiving ACKs,
Enforce Module pulls congestion states from State Module via
corresponding APIs and selects a CC which is used to compute
cwnd (Section III-E)6. Enforce Module computes cwnd by
calling the CCs implemented in Mystique and modifies rwnd
if needed for enforcing cwnd (Section III-C & Section III-D).
Further, when congestion signals are detected, Mystique re-
computes the cwnd. In the meantime, Mystique retransmits lost
packets in order to mitigate the adverse effect on both Web
server’s congestion window and throughput (Section III-D).

5In current implementation of Mystique, packets are intercepted by OVS’s
ovs_dp_process_packet module.

6In this section, cwnd stands for congestion window, while rwnd represents
receive window in acknowledge packet.

5

TABLE II
SOME STATES MONITORED BY Mystique

States Descriptions
una The first packet’s sequence number not acked
nxt The sequence number of next packet
c_rtt Current value of rtt
c_bw Current value of bandwidth
min_rtt Minimum value of rtt
max_bw Maximum value of bandwidth
t_step The value of min_rtt adjustment
bw_step The value of max_bw adjustment

TABLE III
SOME APIS PROVIDED BY Mystique

Methods Descriptions
getCRTT() Obtain state c_rtt’s value
getCBW() Get state c_bw’s value
getMinRTT() Get state min_rtt’s value
getMaxBW() Get state max_bw’s value
setPeriod() Set parameter period’s value
setTstep() Set parameter t_step’s value
setBWstep() Set parameter bw_step’s value
isLoss() Offer loss feedback
setCwnd() Set new congestion window

Detailed designs are elaborated in the following sections.
Please note, congestion states (Table II) can be delivered to
canonical TCP congestion controls through APIs provided
by Mystique (Table III), and then used by varied congestion
controls to compute appropriate congestion window cwnd. The
initial cwnd is set to a default value of 10 MSS [11].

B. Monitoring Congestion Control States

One fundamental operation of Mystique is to obtain packet-
level congestion states, which are then used as inputs for
each congestion control. We note that Mystique should be
implemented in network locations where all traffic would pass
through so that flows/packets/congestion states can be retrieved
(see Section III-F).

TCP sequence number can be obtained directly from pack-
ets. With the sequence number states, Mystique can monitor
flows’ packet loss, sending rate and so on. Similar to [11],
Mystique uses variable una to record the sequence number of
the first packet (denoted as seq) which has been sent, but not
yet acknowledged. Variable nxt is used to record the seq of
the next packet to be sent (but not yet received from the Web
server). Packets between una and nxt are being transmitted
(inflight packets). Each ACK contains an acknowledgement
number (denoted as acknum) in TCP header field. The acknum
represents the packets whose seq is less than or equal to
acknum have been confirmed received by receiver. Thus,
variable una would be updated when the acknum is larger
than current una value, since relative packets (bytes) have been
acknowledged. When a packet is received from Web servers,
nxt would be updated if the new packet’s seq is larger than
current nxt value, because Mystique has received the expected
packet.

With the valuables una and nxt, detecting packet loss is
relatively simple. There are two possible packet loss signals:
three duplicate ACKs and timeout [7] [11]. For the first signal,
Mystique adopts a local duplicate ACK counter dupack to
sense it. When an ACK packet arrives, if the acknum is
less than or equal to the value of una, it means this ACK
is acknowledging stale data packets, and the local dupack

counter would be updated. When dupack counts to 3, i.e., three
duplicate ACKs have been received, a packet loss has been
detected [29]. For the second signal, timeouts can be inferred
when una is less than nxt and an inactivity timer fires.

As shown in Table II, Mystique monitors some congestion
states, such as maximal available bandwidth for current con-
nection max_bw, minimal round trip time for current connec-
tion min_rtt, round trip time measured by current received
ACK c_rtt and measured bandwidth obtain by current received
ACK c_bw. When a new TCP connection is detected, states
min_rtt and max_bw are initialized to ∞ and 0 respectively.
When ACK arrives, c_rtt can be updated by computing the dif-
ference between ACK and corresponding data packets arriving
timestamps. In the meantime, the size of acknowledged bytes
(for the ease of description, we denoted this as acked) can be
obtained by acknum - una, which represents the acknowledged
bytes by using the acknowledgement number to subtract the
first seq that has not been received. Hence, current available
bandwidth c_bw could be computed as acked/c_rtt. Further, if
c_rtt is less than min_rtt which means current observed round
trip time is smaller than the historically minimal RTT min_rtt,
the min_rtt would be renewed as c_rtt. Similarly, max_bw is
updated when c_bw is larger than max_bw, this means current
observed available bandwidth c_bw is larger than the maximal
bandwidth max_bw.

C. Implementing Congestion Control

Next, we use the implementation of BBR as an example
to elaborate how to implement congestion controls based on
Mystique. Other congestion controls can be implemented in
the similar way.

First, we briefly introduce BBR congestion control mech-
anism [10]. A TCP connection has exactly one slowest link
or bottleneck in each direction and such bottlenecks affect
TCP performance. The bottleneck determines the connection’s
maximum sending rate and it is where persistent queues form.
Therefore, there are two physical constraints, round trip prop-
agation time (denoted as RTprop) and bottleneck bandwidth
(denoted as BtlBw), these bound transport performance. A
connection can have the highest throughput and lowest delay
when the total data in flight is equal to the BDP (= BtlBw
× RTprop). This guarantees that the bottleneck can run at
100 percent utilization and there is enough data to prevent
bottleneck starvation but not overfill the pipe. Therefore, in
BBR mechanism, sender needs to continuously measure the
BtlBw and RTprop and control the total inflight data equal
to the BDP [10] [23]. Since the bottleneck bandwidth can
be approximately equal to the maximum available bandwidth,
Mystique recognizes the max_bw as the BtlBw. Similarly,
min_rtt can be used as the RTprop.

Therefore, if the estimations of BtlBw and RTprop are ob-
tained, enforcing BBR’s mechanism is straightforward. Con-
gestion control information is extracted from data and ACK
packets. Connection tracking variables, max_bw and min_rtt,
are updated based on the ACKs (details refer to Section III-B).
Hence, cwnd can be computed based on min_rtt (obtained by
getMinRTT()) and max_bw (obtained by getMaxBW()).

6

In Linux kernel’s implementation, BBR uses special modes
to calibrate the estimation of network capacity, e.g., probe_bw
and probe_rtt. Since Mystique locates outside the host, it is
impossible for Mystique to set the pacing_gain directly (a
parameter for probing more bandwidth). Mystique can not
directly control flows’ sending rate, especially can not force
server to increase its cwnd to probe for more bandwidth.
Therefore, we adopt a trade-off to approximately estimate the
network capacity and to adapt to the network dynamics.

Mystique adopts a time unit variable period, which can be
set via setPeriod(), to update min_rtt and max_bw cyclically.
In every period, states min_rtt and max_bw would be updated
as follow: min_rtt = min_rtt + t_step, max_bw = max_bw
- bw_step. Here, t_step and bw_step are adjustment constant
for recalibrating min_rtt and max_bw respectively. If the new
min_rtt is larger than the RTT under current network condition,
min_rtt would be updated when the next ACK arrives. For
example, we assume the min_rtt at time Tk is 2 seconds,
while the actual network round trip time has been increased to
2.5 seconds at time Tk + period. If the above trade-off is not
adopted, the change of RTT could not be sensed by Mystique.
On the other hand, if above trade-off is adopted and the t_step
is preset as 1 second, Mystique can detect that the min_rtt
has reached 2.5 seconds as follows: (1) Mystique updates the
min_rtt to 3 seconds at time Tk + period. (2) Upon receiving
ACKs, Mystique knows that the c_rtt reaches 2.5 seconds. (3)
Since c_rtt(2.5 seconds) is less than min_rtt(3 seconds), the
min_rtt would be updated as 2.5 seconds. Hence, Mystique
can approach to the actual minimal RTT with such operations
step by step.

Also variable max_bw can be updated based on similar
trade-off mechanism. In current Mystique’s implementation,
period is preset to be 5 seconds, t_step and bw_step are
configured as min_rtt/10 and 1 MSS (via methods setTstep()
and setBwstep()) respectively [30].

D. Enforcing Congestion Control

Once the cwnd is ready, the next step is to ensure that the
Web server’s sending rate can adhere to it. TCP provides built-
in functionality that can be exploited for Mystique. Specifi-
cally, TCP’s flow control allows a receiver to advertise the
amount of data it is willing to process via a receive window
rwnd [11] [29]. Mystique will overwrite the rwnd with its
computed cwnd (done by setCwnd()) for restricting amount
of inflight packets. In order to preserve TCP semantics, this
value is overwritten only when it is smaller than the packets’
original rwnd, i.e., rwnd = min(cwnd, rwnd). Such scheme
restricts amount of packets sent from server to clients while
preserving TCP semantics.

Ensuring a Web server’s flow adheres to receive window is
relatively simple. Web servers with unaltered TCP stacks will
naturally follow our enforcement scheme because the stacks
will simply follow the standard. The Web server’s flow then
uses min(cwnd, rwnd) to limit how many packets it can send
since Web server would constrain single connection’s inflight
packets as the smaller value of congestion window and receive
window. Further, in order to be compatible with TCP receive

window scaling, Mystique monitors handshakes to obtain this
value and cwnd are adjusted accordingly.

When it comes to enforcing cwnd, there are two possible
situations for Mystique. For the ease of description, we use
general example to illustrate the conditions rather than spec-
ified congestion controls, in order to give a general idea of
this challenge. (a) When cwnd in Mystique is smaller than
the congestion window in Web server, modifying rwnd can
limit the sending rate effectively. For example, if the cwnd in
Mystique is 20 and the congestion window of Web server is
30, modifying rwnd can throttle the connection’s sending rate
since the rwnd is less than the congestion window in Web
server and sending rate equals to min(cwnd, rwnd). In this
condition, Mystique takes the control of server’s congestion
control which achieves Mystique’s goal. (b) Whereas if Mys-
tique’s cwnd is the larger one, modifying rwnd may not be an
effective method. For example, if the cwnd in Mystique is 20
and the cwnd of Web server is 10, throttling the connection’s
inflight packets by modifying rwnd would be unavailing since
the rwnd is larger than cwnd of Web server and this cwnd is
in effect to constrain the sending rate. Therefore, Web server’s
congestion window have to stay at a high value to allow
Mystique enforcing its congestion window.

Since we have assumed that Web server runs on loss based
congestion control which is sensitive to packet loss. Here, we
take Cubic as an example [9]. Cubic follows the AIMD rule. If
a loss event occurs, Cubic performs a multiplicative decrease
of congestion window by a factor of β where β is a decrease
constant and the window just before the reduction is set to
the parameter Wmax . Otherwise, Cubic increases the window
by using a window growth function which is set to have its
plateau at Wmax . The window growth function of Cubic uses
the following function: W(t) = C(t - K)3 + Wmax , Where
C is a Cubic parameter, t is the elapsed time form the last
window reduction, and K is the time period that the above
function takes to increase W to Wmax when there is no further
loss event and is calculated by using the following equation:
3
√

Wmaxβ
C . If Mystique wants to prevent condition (b) occur-

ring, avoiding Web server receives loss signals which lead
to window shrinkage is of importance. Therefore, Mystique
prevents any congestion signals (e.g., ECN feedback and three
duplicated ACKs) are transmitted to Web server in order to
prevent decreasing the cwnd of Web server. As Web servers
would not receive these congestion signals, their congestion
window will not be affected. Besides, in addition to above
methods, Mystique adopts packets buffering and retransmits
the corresponding packet when the loss signals are detected.
With continuous data transmission, Web server’s congestion
window would arrive at a high level gradually.

If Web servers do not run loss-based congestion control,
e.g., running on delay-based CC, we can adopt Fake-ACK
(FACK) mechanism [7] [11] to get the control of the con-
nections. Mystique can send dedicated FACK packet to Web
servers in order to keep the RTT states measured by the server
relatively low, so that the Web server would keep its sending
rate at a high level.

7

E. Dynamic Congestion Control Switching

Mystique always tries to assign suitable congestion controls
on a per-flow basis according to networking conditions. The
most suitable congestion control that would be employed can
be either/both determined by current network congestion states
or administrator defined switching logics. Algorithm 2 shows
a simple example of congestion control switching logic. In the
following, we recognize BBR, Hybla and Illinois can perform
well under most network environment according to Table I.

Since Mystique dynamically employs the most suitable
congestion control according to connection conditions, CC
switching can happen even for a single TCP connection.
It is essential to ensure smoothness when performing CC
switching. Some congestion controls (e.g., BBR & Hybla)
can compute their congestion window based on the measured
states. Others (e.g., Illinois) may need other parameters to
compute congestion window. Though these parameters can
become useless after switching to other congestion controls,
Mystique updates all these parameters continuously to prevent
any performance degradation after switching back to corre-
sponding mechanisms later.
Enforcement Example: Next is a step-by-step example to
show how Mystique works with Algorithm 2. Particularly,
we will show how to operate a TCP Cubic Web server
via Mystique with the BBR congestion control scheme. The
network scenario is assumed to have RTT larger than 50ms and
packet loss exists (see Table I). For the ease of presentation,
the value of cwnd on Web server is assumed to have arrived
at a high level, otherwise it would be increased to such high
value gradually (see Section III-D). The enforcement steps are
as follows:

1) Mystique monitors all data and ACK packets. When an
ACK packet arrives, Mysitque extracts and updates the
congestion states, e.g., min_rtt and max_bw.

2) According to Algorithm 2, Mystique employs BBR as
the most suitable congestion control for this connection.

3) Mystique will call procedure of BBR to caculate cwnd
with all required states. In this case, cwnd = min_rtt ×
max_bw. If cwnd is smaller than the original rwnd of
this ACK, Mystique will overwrite the rwnd with cwnd.

4) Since the congestion window of Web server has a high
value, the sending rate of Web server is restricted by the
rwnd of this ACK.

Hence, Mystique can take the control of Web server’s conges-
tion control.

Finally, based on Mystique, administrators can define more
complex switching logic using more metrics, e.g., loss ratio,
variation of RTT. Besides, a more uniform schedule can also
be used to mitigate side effects of some CCs [11]. Due to
space limitation, other switching schemes are not elaborated
here.

F. Available Deployment Locations

Mystique can be easily deployed in three possible locations
in cloud datacenters:
• VMs: Deploying Mystique in VMs allows network admin-

istrators to setup new Mystique servers or release old ones

Algorithm 2 Congestion control switching logic example
Input: Congestion states, e.g, loss, RTT

1: if no loss then
2: Return Hybla
3: else if RTT < 50ms then
4: Retrun Illinois
5: else
6: Return BBR
7: end if

dynamically for load-balancing. However, such scheme
requires routers/switches redirecting desired traffic to
Mystique servers, which is not difficult specially for SDN-
enabled environment.

• Hypervisors: Since Mystique currently can be imple-
mented in OVS which is compatible with most hy-
pervisors, hypervisors of physical servers would be a
good choice of employing Mystique. Such scheme allows
Mystique to be easily scaled with numbers of servers
in datacenters. It also minimizes the latency between
Mystique and Web servers, i.e., VMs. Furthermore, no
route redirection is required in this case. However, the
flexibility and scalability are limited considering migra-
tions of VMs or situation that VMs on a server are heavy
loaded.

• Routers/Switches: Routers/switches can inherently mon-
itoring all incoming traffic, making Mystique can eas-
ily enforce congestion control without route redirection.
However, traffic sent through a router/switch is deter-
mined by the routing algorithm of datacenters, and it is
difficult to perform load balancing. And heavy traffic may
also overwhelm capacity of routers/switches.

Each deployment choice suits for different requirements and
scenarios. In practice, combination of these three deployment
choices above can be considered.

IV. IMPLEMENTATION

We have implemented a prototype of Mystique on Open
vSwitch (OVS) v2.7.0 [31]. About 1400 lines of code are
added to implement Mystique’s basic functions, including
tracking congestion states, managing buffer and switching
logic. As shown in Figure 4, Mystique is mainly comprised
of State Modules, Enforce Modules and Buffer Management.
The only function of Buffer Management is to buffer all
packets from Web server to clients and to retransmit them
if needed. skb_clone() is used for packet buffering to prevent
deep-copy of data. Besides, the State Module is responsible
for monitoring congestion states while the Enforce Module is
used to implement and enforce both congestion controls and
administrator-defined switching logics.
State Module: State Module monitors every incoming or out-
going flows and obtains congestion states. Flows are hashed on
a 5-tuple (IP addresses, ports and protocol) to obtain a flow’s
entry for maintaining the congestion control states mentioned
in Section III-B. SYN packets are used to create flow entries
while FIN packets are used to remove flows entries. Other

8

(a) Mystique in VM (b) Mystique in Hypervisor
Fig. 6. Test-bed Topology.

Fig. 7. Simulation Topology

TCP packets, such as data and ACKs, trigger updates of
flow entries. Since there are many table lookup and update
operations, Read-Copy-Update (RCU) hash tables are used to
enable efficient lookups. Additionally, spinlocks [32] are used
on each flow entry in order to allow for multiple flow entries
to be updated simultaneously. Multi-threading technique is
used for updating congestion states and parameters. When an
ACK arrives, a new thread is created to free up according ac-
knowledging bytes and update congestion states and variables.
When a data packet arrives, new thread is used for recording
the state variables of this packet. Mystique provides an event
driven programming model and the congestion states could be
obtained by calling the corresponding APIs.
Enforce Module: Enforce Module enforces administrator-
defined switching logics and corresponding congestion con-
trols. Submodule Dynamic Switching and CC Implementations
would use the according APIs provided by State Module to
pull current TCP connection states for dynamically employ-
ing the most suitable CCs or computing cwnd adhered to
according mechanisms. Every time a new ACK from client
arrives, cwnd is computed with the congestion states obtained
from State Module. If cwnd is smaller than ACK’s original
rwnd, Mystique rewrites rwnd with computed cwnd. With the
help of NIC offloading features such as TSO (TCP Segment
Offloading), some necessary operations can be offloaded to
NIC in order to reduce computational overhead, e.g., TCP
checksum calculation [11].

V. EVALUATION

This section quantifies the effects of Mystique and evaluates
the performance of Mystique through extensive experiments.

A. Experiment Setup

Testbed Setup: The test-bed consists of 14 servers from both
production private and public clouds and 5 clients are used
for obtaining in-depth understanding. The setup of these ma-
chines are summarized in Table IV and Table V. Particularly,
names of Web servers reflect their locations (e.g., private or

Clients

GZ SZ BJ Lon NY

R
T

T
 (

m
s
)

0

100

200

300

400

500

(a) The RTT between clients and
servers in private cloud

Clients

GZ SZ BJ Lon NY

R
T

T
 (

m
s
)

0

100

200

300

400

500

(b) The RTT between clients and
servers in public cloud

Fig. 8. The RTT(ms) between clients to private/public Cloud.

public cloud) and evaluated congestion control schemes. For
example, Web server Pri-Cubic represents a server locates in
private cloud and runs Cubic as its default CC. Pub-Reno
demonstrates that this Web server located at public cloud (i.e.,
AWS) and Reno is configured as its CC. Further, there are two
backend servers (Pri-backend & Pub-backend) which are used
for evaluating Mystique, e.g., Pri-backend is a backend server
in private cloud aiming at evaluating Mystique in private cloud
environment. Both backend servers run Cubic as their default
congestion control.

The private cloud is a campus datacenter located in Jinan
University, Guangzhou, China. It contains over 400 Web
servers (VMs) running on 293 physical servers. The bandwidth
of the datacenter to the Internet is 20Gbps, shared by all
servers in the datacenter. And the data rate of NICs on
each physical server is 1Gbps, shared by all VMs on the
same server. The AWS (public cloud) [33] is also used for
deployment and experiments of evaluating the performance of
Mystique. Our experiments involve clients from five locations
described in Table V. These clients experienced different RTT
and loss ratio when connecting to both private and public cloud
Web servers. Figure 8 depicts the average Round Trip Time
of each pair of clients and Web servers with variation. Since
all private cloud or public cloud Web servers locate in the
same datacenter, we can assume their RTTs to the same client
are similar. All of these Web servers (including two Mystique
servers) and clients are connected through the Internet. They
all run Ubuntu 16.04 with Linux kernel 4.9 and Apache 2.0
as well. Besides, in all Web servers, tcp_no_metrics_save,
tcp_sack and tcp_low_latency are set to 1 and the MTU size
is configured as 1.5KB [7] [11].
Simulation Setup: Mininet based simulations are used to eval-
uate Mystique implemented on switches/routers. The topology
used in simulation is a star topology similar to [7], shown
in Figure 7. In order to simulate intra-datacenters background
traffic, a long-lived flows from server 1 to server 2 is created.
Five clients are used to represent the test-bed clients for con-
sistency. Links are configured according to Figure 8, mirroring
the configuration of our testbed.
Mystique Setup: Each Mystique server is equipped with 2.30
GHz CPU and 4 GB memory. Besides, the Mystique server in
Private cloud has 1Gbps bandwidth while the one in public
cloud has 5Gbps bandwidth. Current version of Mystique
is implemented in Open vSwitch 2.7.0, which enforces the
CC switching logic presented in Algorithm 2. Further, we
evaluated Mystique by triggering clients to connect to Pri-

9

TABLE IV
WEB SERVERS INFORMATION IN TEST-BED EXPERIMENT

Machine(s) Location Role CPU Mem. Band. CC
Pri-Cubic Guangzhou, China Private Cloud Server Intel(R) E5-2670 @ 2.30GHz 4GB 1Gbps Cubic
Pri-Reno Guangzhou, China Private Cloud Server Intel(R) E5-2670 @ 2.30GHz 4GB 1Gbps Reno
Pri-BBR Guangzhou, China Private Cloud Server Intel(R) E5-2670 @ 2.30GHz 4GB 1Gbps BBR
Pri-Hybla Guangzhou, China Private Cloud Server Intel(R) E5-2670 @ 2.30GHz 4GB 1Gbps Hybla
Pri-Illinois Guangzhou, China Private Cloud Server Intel(R) E5-2670 @ 2.30GHz 4GB 1Gbps Illinois
Pri-backend Guangzhou, China Private Cloud Server Intel(R) E5-2670 @ 2.30GHz 4GB 1Gbps Cubic
Pub-Cubic Singapore AWS Server Intel(R) E5-2670 @ 2.30GHz 4GB 5Gbps Cubic
Pub-Reno Singapore AWS Server Intel(R) E5-2670 @ 2.30GHz 4GB 5Gbps Reno
Pub-BBR Singapore AWS Server Intel(R) E5-2670 @ 2.30GHz 4GB 5Gbps BBR
Pub-Hybla Singapore AWS Server Intel(R) E5-2670 @ 2.30GHz 4GB 5Gbps Hybla
Pub-Illinois Singapore AWS Server Intel(R) E5-2670 @ 2.30GHz 4GB 5Gbps Illinois
Pub-backend Singapore AWS Server Intel(R) E5-2670 @ 2.30GHz 4GB 5Gbps Cubic

Mystique1 Guangzhou, China Private Cloud Deployment Intel(R) E5-2670 @ 2.30GHz 4GB 1Gbps Alg. 2
Mystique2 Singapore AWS Deployment Intel(R) E5-2670 @ 2.30GHz 4GB 5Gbps Alg. 2

TABLE V
CLIENTS INFORMATION IN TEST-BED EXPERIMENT

Machine Location CPU Mem. Band.
GZ Guangzhou, China Intel i7-4790 @ 3.6GHz 16GB 1Gbps
BJ Beijing, China Intel(R) E5-2686 @ 2.30GHz 2GB 5Mbps
SZ Shenzhen, China Intel(R) E5-2699 @ 2.40GHz 2GB 5Mbps
NY New York, US Intel(R) E5-2670 @ 2.30GHz 4GB 5Mbps
Lon London, UK Intel(R) E5-2670 @ 2.30GHz 4GB 5Mbps

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

5

10

15

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) Small file in private cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

100

200

300

400

500
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) Large file in private cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

2

4

6

8

10

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(c) Small file in public cloud

Clients

GZ SZ BJ Lon NY
A

v
e

ra
g

e
 T

C
T

 (
s

)

0

500

1000

1500
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(d) Large file in public cloud
Fig. 9. The average transfer completion time (TCT) for both small file and large file in private cloud and public cloud, when Mystique is deployed in VM.

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
p

u
t

(M
b

it
s

/s
)

0

1

2

3

4

5

6

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) In private cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
p

u
t

(M
b

it
s

/s
)

0

10

20

30

40

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) In public cloud

Fig. 10. Average throughput (Tput) for both private and public cloud with
Mystique deployed in VM.

backend/Pub-backend through Mystique. Though such eval-
uation would add additional one-hop latency, the results show
that Mystique can obtain impressive performance constantly.
Schemes Compared: To understand Mystique performance,
we compare Mystique with other five congestion controls.
Clients connect to these Web servers directly in order to
evaluate the performance of these schemes, and the detailed
machine information and configuration is in Table IV.

Metrics: We use Transfer Completion Time (TCT) as the

Websites

CNN Gua. Sta. Wal. Yah.

A
v

e
ra

g
e

 L
o

a
d

 t
im

e
(s

)

0

0.5

1

1.5

2

2.5

3

3.5
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) In private cloud

Websites

CNN Gua. Sta. Wal. Yah.

A
v

e
ra

g
e

 L
o

a
d

 t
im

e
(s

)

0

1

2

3

4

5

6
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) In public cloud

Fig. 11. Average load time for both private and public cloud Websites with
Mystique deployed in VM.

primary performance metric. For all Web servers except
Mystique1 and Mystique2, we uploaded two files: small file
(OpenFlow Switch Specification v1.5.1.pdf [34], 1.2MB) and
large file (Linux kernel 4.13 source code.xz [35], 95.9MB).
Besides, average throughput and load time are considered
as primary metrics for efficiency of data transfers. We also
snapshot the homepages of CNN, Guardian (Gua.), Stack
Overflow (Sta.), Walmart (Wal.) and Yahoo (Yah.)7 for evaluat-

7The whole homepages are downloaded from their original Website to avoid
effects of any dynamic contents in the Webpages.

10

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

2

4

6

8

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) Small file in private cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

100

200

300

400

500
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) Large file in private cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

5

10

15

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(c) Small file in public cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

500

1000

1500
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(d) Large file in public cloud
Fig. 12. The average transfer completion time for both small and large files in private and public cloud, when Mystique is deployed in hypervisor.

Clients

GZ SZ BJ Lon NY

A
v
e
ra

g
e
 T

p
u

t
(M

b
it

s
/s

)

1

2

3

4

5

6

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) In private cloud

Clients

GZ SZ BJ Lon NY

A
v
e
ra

g
e
 T

p
u

t
(M

b
it

s
/s

)

0

10

20

30

40

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) In public cloud
Fig. 13. The average throughput (Tput) in private cloud and public cloud,
when Mystique is deployed in hypervisor.

Clients

CNN Gua. Sta. Wal. Yah.

A
v
e
ra

g
e
 L

o
a
d

 T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) In private cloud

Clients

CNN Gua. Sta. Wal. Yah.

A
v
e
ra

g
e
 L

o
a
d

 T
im

e
 (

s
)

0

1

2

3

4

5

6

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) In public cloud
Fig. 14. The average load time in private cloud and public cloud, when
Mystique is deployed in hypervisor.

ing the performance of Mystique on Webpages with elements
including html files, js, css, images and so on. Curl [36] is
used to measure and record the TCT and throughput and
Chrome Devtools [37] on client GZ is used to obtain the
load time of the mirrored Websites. Besides, we use sar [38]
to measure CPU and memory usage. Confidence interval and
confidence level are used too. Confidence interval contains a
range of potential values of the unknown population parameter
and confidence level represents the frequency of confidence
intervals that contain the true value of the unknown population
parameter [39] [40].

For each scenario, we have conducted a 48-hour data
transfer experiment by instructing all clients to pull data from
private/public cloud servers simultaneously for every 2 hours.
We report results averaged unless mentioned otherwise.

B. Deployment in VMs

We first evaluate Mystique’s performance when it is imple-
mented in a VM, as shown in Figure 6(a). Figure 9∼11 show
the performance of Mystique and other schemes, including
TCT, throughput and load time.

Private Cloud: In comparison with Cubic, Mystique performs
better (8.73%∼26.18%) for both transfer of small file and
large file in private cloud. Comparing with Reno, Mystique
achieves up to 36.9% improvement among all clients. Figure10
shows that Mystique has about 29.28% and 31.03% throughput
improvement over Cubic and Reno, respectively. On the other
hand, Mystique outperforms Hybla and Illinois by 21.43%
and 25.92% on average, respectively. Specially, Mystique
achieves up to 31.03% higher throughput compared to other
five schemes and these results lie in the confidence interval
with confidence level 90%. This convincingly demonstrate that
Mystique can improve transfer performance. Meanwhile, for
SZ and BJ, the performance of Cubic is better than Reno.
On the contrary, Reno performs better in clients Lon and
NY. These results confirm the observations we discussed in
Section I and Section II. Moreover, Mystique also has better
performance than other schemes for Websites loading, up to
25.62% performance enhancement which shows that Mystique
is able to reduce service latency for Websites.
Public Cloud: Mystique also achieves good performance in
public cloud deployment. Evidently, Mystique reduces av-
erage completion time for both small file and large file
by up to 14.29% and 32.5% respectively over Cubic and
11.33%∼35.14% for both over Reno. For throughput, Mystique
achieves up to 9.74% and 14.2% better performance compared
to Cubic and Reno respectively. In contrast to BBR, Mystique
can reduce TCT by up to 5.81% and 5.05% for small file and
large file respectively. And Mystique outperforms Hybla and
Illinois by up to 20.45% and 34.1% respectively. Particularly,
clients Lon and NY are instances hosted on Amazon AWS.
Thus the transfer between public cloud Web servers and
Lon and NY are completed quickly, due to AWS inter-DC
acceleration. Besides, Mystique reduces load time of accessing
Websites by about 17.13% on average, when compared with
other schemes.

Clearly, the evaluation results above have confirmed our
observations in Section II. In addition, the results demonstrate
that Mystique can achieve the best performance with up to
36.9% improvement on TCT. This improvement also demon-
strates that Mystique reduces the transfer latency effectively.

C. Deployment in Hypervisors

We next evaluate Mystique’s performance when it runs
inside server (like a hypervisor), as shown in Figure 6(b). Fig-
ure 12∼14 depict the performance of all compared schemes,
including TCT, throughput and load time.

11

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

5

10

15

20

25

30 Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) Small file in private cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

200

400

600

800

1000

1200

1400 Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) Large file in private cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

5

10

15

20
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(c) Small file in public cloud

Clients

GZ SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

400

600

800

1000

1200

1400 Mystique

Cubic

Reno

BBR

Hybla

Illinois

(d) Large file in public cloud
Fig. 15. The average transfer completion time for both small and large files in private and public cloud, when Mystique is deployed in switch.

Clients

GZ SZ BJ Lon NY

A
v
e
ra

g
e
 T

p
u

t
(M

b
it

s
/s

)

0

2

4

6

8

Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) In private cloud

Clients

GZ SZ BJ Lon NY

A
v
e
ra

g
e
 T

p
u

t
(M

b
it

s
/s

)

0

0.5

1

1.5

2

2.5

3
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) In public cloud
Fig. 16. The average throughput (Tput) in private cloud and public cloud,
when Mystique is deployed in switch.

Private Cloud: First, we observe that the performance of
Mystique is better than Cubic with latency reduction by up
to 18.44% for both the transfer of small file and large file.
Compared to Reno, Mystique reduces 14.23%∼26.39% TCT
among all clients. By measuring throughput, Mystique can
improve Web server’s average throughput up to about 28.57%
and 33.86% against Cubic and Reno, respectively. On the
other hand, Mystique outperforms Hybla and Illinois by up
to 32.73% and 29.93%, respectively. Particularly, Mystique
improves 6.81%∼33.86% throughput when compared to other
schemes. The throughput results lie in the confidence interval
with confidence level 90% which demonstrates that Mystique
outperforms other schemes with convincing evidence. When it
comes to Websites’ load time, Mystique achieves up to 28.75%
latency reducing, compared to other congestion controls.
Public Cloud: Mystique also achieves good performance
in Public Cloud deployment. Compared to Cubic, Mystique
reduces the average TCT for both small file and large file by
up to 23.48% and 25.63% respectively. Moreover, Mystique
outperforms Reno (10.72%∼30.76%) among all clients. Be-
sides, compared to BBR, Mystique can reduce TCT by up to
7.99% and 4.66% for small file and large file respectively. And
Mystique achieves 21.8% and 24.68% better performance on
average, comparing with Hybla and Illinois respectively. In
addition, Mystique achieves up to 16.66% higher throughput
compared to other schemes. And, Mystique reduces load time
of accessing Websites by about 17.22% on average, compared
to other schemes.

Additionally, by comparing the testbed results of both de-
ployment in VM and deployment in Hypervisor, we conclude
that Mystique on VM achieves comparable performance as
it on Hypervisor, even with additional one-hop delay. Since
Mystique is installed in datacenter where latency is relatively

of concurrent TCP connections

100 500 1K 5K 10K

C
P

U
 U

s
a
g

e
 (

%
)

0

5

10

15 OVS

Mystique

(a) CPU usage

of concurrent TCP connections

100 500 1K 5K 10K

M
e
m

o
ry

 U
s
a
g

e
 (

%
)

0

5

10

OVS

Mystique

(b) Memory usage
Fig. 17. The CPU and memory usage of Mystique under different scale of
concurrent TCP connections

low, such one-hop delay is negligible.

D. Deployment in Routers/Switches

Performance of Mystique deployed in routers/switches is
evaluated in a Mininet simulation environment. Since links are
configured according to Figure 8, for the ease of description
and consistency, client 1 to client 5 are named as the machine
name in Table V according their link-setting. Besides, both
private and public cloud are simulated in experiments and
unmodified OVS is used when evaluating all schemes except
Mystique. Results are the average of 10 runs which are shown
in Figure 15 and Figure 16.
Private Cloud: Compared to Cubic, Mystique can reduce
TCT by up to 24.6% and 31.25% for the transfer of small
file and large file respectively. Furthermore, Mystique outper-
forms Reno (17.9%∼35.9%) on all clients. As for throughput,
compared to Cubic and Reno, Mystique can increase Web
server’s throughput for about 23.91% and 27.11% on average,
respectively. Comparing with BBR, Mystique can reduce TCT
by up to 5.86% and 4.59% for the transfer of small file
and large file respectively. In the meantime, Mystique obtains
13.15% higher throughput than BBR’s. When it comes to the
comparison with Hybla and Illinois, Mystique improve the
performance by 19.56% and 25.34% on average, respectively.
Further, Mystique obtains 5.46%∼27.11% throughput improve-
ment compared to other five schemes. with confidence level
90%, the throughput results lie in the confidence interval.
Public Cloud: Mystique reduces the average TCT for both
small file and large file by up to 25.88% and 29.74% re-
spectively. Compared to Reno, Mystique can reduce TCT
by 16.31%∼37.08% among all clients. In addition, Mystique

12

Time (s)

5 15 25 35 45 55 65 75 85

#
 o

f
b
u
ff
e
r

s
iz

e

85

95

105

115

125

135

145

155

F
o
rw

a
rd

in
g
 r

a
te

 (
k
p
p
s
)

265

275

285

295

305

315

Buffer size Forwarding rate

Fig. 18. Buffering packets size and corresponding forwarding rate.

Processing Time (ms)

0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

Fig. 19. CDF of processing time on each packet in Mystique.

achieves up to 20.38% and 30.76% higher throughput com-
pared to Cubic and Reno respectively. Comparing with BBR,
Mystique can reduce TCT by up to 10.86% and 18.36% for
the transfer of small file and large file respectively. Meanwhile,
Mystique obtains 13.8% higher throughput than BBR’s. Fur-
ther, Mystique outperforms Hybla and Illinois by 20.34% and
25.68% on average, respectively.

With above simulation experiments, we can conclude that
Mystique outperforms other five schemes when Mystique is de-
ployed in Router/Switches. Particularly, Mystique achieves up
to 37.08% lower TCT when compared to other five schemes.
These results demonstrate the effectiveness of Mystique again.

E. Overhead

The overhead of Mystique is also evaluated in test-bed ex-
periments. Both CPU usage and memory usage are measured
by using sar [38] with simulating concurrent connections.
Multiple simultaneous TCP flows are started from GZ to Pri-
backend via Mystique1 (similar to Figure 6(a)) by using Web
Bench [41]. Other services on the Mystique server are shut
down during the experiment.
CPU Usage: The system-wide CPU overhead of Mystique
compared to that of original OVS is shown in Figure 17(a).
Though Mystique increases CPU usage in all cases, the
increase is acceptable. The largest difference is less than
2 percentage points: the OVS and Mystique have 14.1%
and 15.8% utilization, respectively for 10K connections were
generated.
Memory Usage: The system-wide memory overhead of Mys-
tique compared to that of original OVS is shown in Fig-
ure 17(b). Similar to CPU usage, Mystique increases memory
usage in all cases. In the worst case with 10K connections,
Mystique just uses 3% memory more. We believe the usage
increase is acceptable due to memory size for switching chips
has grown five times over the past four years [42].
Buffer Size: The buffer size of Mystique is measured by
triggering both small and large file transfers from all five
clients simultaneously. Figure 18 depicts the result of the
number of buffering packet of the worst case (actually the
connection from NY) from time 10 second to time 80 second.

From the figure, we can tell that the largest buffer size is
125 which is affordable. Besides, the forwarding rate is also
measured, which is slightly above 300K packet per second.
Packet Processing Time: Packet processing time of Mystique
is also measured. Results in Figure 19 show that, in most
cases, Mystique can process a packet within 2.5ms, which is
negligible compared the latency of Web service.

VI. RELATED WORKS

With new network environments emerging, new congestion
controls are in great need to enhance the TCP performance
at such varied scenarios. Dozens of CCs have been proposed
successively [10] [18] [17] [15] [43] [44] and most of them
have their target scenarios. For example, Sprout [17] was pro-
posed to cope with wireless network, while DCTCP [44] and
DCQCN [43] were applied for optimizing TCP performance in
DCNs. However, the performance for the environment except
target scenarios remains uncertainty. Hence, only using one
CC to handle all traffic is not enough, especially facing more
complicated environment.

Rather than proposing a new congestion control, some
works investigate if congestion controls can be implemented
in a overlay manner. AC/DC [11] and vCC [7] are frontiers
which convert default CC into operator-defined datacenter
TCP congestion controls. AC/DC suggests that datacenter
administrators take control of the CC of all the VMs. In par-
ticular, it demonstrates this approach by AC/DC implemented
a vSwitch-based DCTCP congestion control. And vCC adopts
a translation layer between different CCs. The evaluation of
these two schemes has demonstrated their excellent perfor-
mance in translating CC between VMs and actual network.

Specifically, Mystique was inspired by these two schemes,
with a focus on Web service, allowing administrators to
perform fine-grained and dynamic congestion controls.

Recently, NetKernel [45] provides a vision of network stack
as a service in public cloud which decouples network stack
from OS kernel. And CCP [46] [47] implements different
CCs in a separate agent outside the datapath which provide
better abstractions for implementation of CC. Both NetKernel
and CCP share some objects of Mystique, such as flexibility
of deploying new protocols. However, these two proposals
need to modify server’s stacks while Mystique requires no
modification of servers.

VII. CONCLUSIONS

Each congestion control has its own suitable role to play
in various networking circumstance while each web server
may service clients from varied network environment. In this
paper, we proposed Mystique, a resilient transparent con-
gestion control enforcement scheme, which aims to enforce
more appropriate congestion controls for corresponding net-
work environment with the purpose of reducing web service
latency. Our extensive test-bed results have demonstrated the
effectiveness of Mystique with affordable overhead. The future
direction of this work will be to investigate and implement
more newly proposed congestion controls and more effective
switching logics to attain more effective transmission.

13

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
providing valuable comments to improve this work. This work
is partially supported by National Natural Science Foundation
of China (NSFC) Project No. 61772235 and 61602210; NSFC
Key Project No. 61532013 and No. 61872239; 0007/2018/A1,
0060/2019/A1, DCT-MoST Joint-project No. 025/2015/AMJ
of Science and Technology Development Fund, Macao S.A.R
(FDCT); University of Macau Grant Nos: MYRG2018-00237-
RTO, CPG2019-00004-FST and SRG2018-00111-FST; the
Fundamental Research Funds for the Central Universities
(21617409, 21617408 and 21619404); the UK Engineering
and Physical Sciences Research Council (EPSRC) grants
EP/P004407/2 and EP/P004024/1; the Science and Tech-
nology Planning Project of Guangdong (2015A030401043,
2017A040405029); the Science and Technology Planning
Project of Guangzhou (201902010041); the Educational Com-
mission of Guangdong Province (2018KTSCX016).

REFERENCES

[1] I. N. Bozkurt, A. Aguirre, B. Chandrasekaran, P. B. Godfrey, G. Laugh-
lin, B. Maggs, and A. Singla, “Why is the internet so slow?!” in
International Conference on Passive and Active Network Measurement.
Springer, 2017, pp. 173–187.

[2] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: the virtue of gentle aggression,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 159–170, 2013.

[3] X. Chen, H. Zhai, J. Wang, and Y. Fang, “A survey on improving TCP
performance over wireless networks,” Resource management in wireless
networking, pp. 657–695, 2005.

[4] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 350–361.

[5] C. Li and L. Cui, “A Novel NFV Schedule Optimization Approach with
Sensitivity to Packets Dropping Positions,” in Proceedings of the 2018
Workshop on Theory and Practice for Integrated Cloud, Fog and Edge
Computing Paradigms, ser. TOPIC ’18. New York, NY, USA: ACM,
2018, pp. 23–28.

[6] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet
latency: A survey of techniques and their merits,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, pp. 2149–2196, 2014.

[7] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. Mckeown,
I. Abraham, and I. Keslassy, “Virtualized Congestion Control,” in ACM
SIGCOMM 2016, 2016, pp. 230–243.

[8] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
modification to TCP’s fast recovery algorithm,” Tech. Rep., 2012.

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” Acm Sigops Operating Systems Review, vol. 42, no. 5,
pp. 64–74, 2008.

[10] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: congestion-based congestion control,” Queue, vol. 60, no. 2, pp.
58–66, 2017.

[11] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella, “AC/DC TCP: Virtual congestion control enforcement for
datacenter networks,” in ACM SIGCOMM 2016. ACM, 2016, pp. 244–
257.

[12] Y. Zhang, L. Cui, F. P. Tso, Q. Guan, W. Jia, and J. Zhou, “A Fine-
grained and Transparent Congestion Control Enforcement Scheme,” in
Proceedings of the Applied Networking Research Workshop. ACM,
2018, pp. 26–32.

[13] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments Using Container-based Emula-
tion,” in Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies, ser. CoNEXT ’12. New
York, NY, USA: ACM, 2012, pp. 253–264.

[14] A. Singla, B. Chandrasekaran, P. Godfrey, and B. Maggs, “The internet
at the speed of light,” in Proceedings of the 13th ACM Workshop on
Hot Topics in Networks. ACM, 2014, p. 1.

[15] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting Congestion Control for Consistent High Performance.”
in NSDI, vol. 1, no. 2.3, 2015, p. 2.

[16] V. Arun and H. Balakrishnan, “Copa: Practical Delay-Based Congestion
Control for the Internet,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). USENIX Association,
2018.

[17] K. Winstein, A. Sivaraman, H. Balakrishnan et al., “Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks.” in
NSDI, vol. 1, no. 1, 2013, pp. 2–3.

[18] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC Vivace: Online-Learning Congestion Control,” in
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, 2018.

[19] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in 2018 USENIX Annual Technical Conference
(USENIXATC 18), 2018, pp. 731–743.

[20] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, “An
experimental study of the learnability of congestion control,” in ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4. ACM,
2014, pp. 479–490.

[21] iPerf, “The ultimate speed test tool for TCP, UDP and SCTP,” https:
//iperf.fr/iperf-doc.php, [Online; accessed 20-June-2019].

[22] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for het-
erogeneous networks,” International journal of satellite communications
and networking, vol. 22, no. 5, pp. 547–566, 2004.

[23] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols (ICNP). IEEE, 2017, pp. 1–10.

[24] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling tcp reno
performance: a simple model and its empirical validation,” IEEE/ACM
transactions on Networking, vol. 8, no. 2, pp. 133–145, 2000.

[25] G. Judd, “Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter.” in 12nd USENIX NSDI, 2015, pp. 145–157.

[26] W3Techs, “Historical trends in the usage of operating sys-
tems for websites,” https://w3techs.com/technologies/history_overview/
operating_system, [Online; accessed 20-June-2019].

[27] L. Xu, A. Zimmermann, L. Eggert, I. Rhee, R. Scheffenegger, and S. Ha,
“Cubic for fast long-distance networks,” 2018.

[28] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The Design and
Implementation of Open vSwitch.” in NSDI, 2015, pp. 117–130.

[29] V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High
Performance. RFC Editor, 1992.

[30] J. Postel, “The TCP maximum segment size and related topics,” 1983.
[31] “OpenvSwitch 2.7.0,” http://openvswitch.org/releases/openvswitch-2.7.

0.tar.gz.
[32] R. Love, Linux Kernel Development (Novell Press). Novell Press, 2005.
[33] “AWS Cloud Computing Service,” https://aws.amazon.com.
[34] “Openflow specification 1.5.1,” https://www.opennetworking.org/

wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf.
[35] “Linux kernel 4.13 source code,” https://cdn.kernel.org/pub/linux/kernel/

v4.x/linux-4.13.tar.xz.
[36] curl, “A command line tool and library for transferring data with URL

syntax,” https://github.com/curl/curl, [Online; accessed 20-June-2019].
[37] “Chrome DevTools,” https://github.com/ChromeDevTools/

awesome-chrome-devtools.
[38] “SYSSTAT,” http://sebastien.godard.pagesperso-orange.fr/.
[39] J. Neyman, “X-outline of a theory of statistical estimation based on the

classical theory of probability,” Philosophical Transactions of the Royal
Society of London. Series A, Mathematical and Physical Sciences, vol.
236, no. 767, pp. 333–380, 1937.

[40] M. Kendall and A. Stuart, “The advanced theory of statistics: Inference
and relationship, vol. 2,” Griffin, London, 1961.

[41] “WebBench 1.5,” http://home.tiscali.cz/~cz210552/webbench.html.
[42] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making

Stateful Layer-4 Load Balancing Fast and Cheap Using Switching
ASICs,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2017. ACM, 2017, pp.
15–28.

[43] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control

https://iperf.fr/iperf-doc.php
https://iperf.fr/iperf-doc.php
https://w3techs.com/technologies/history_overview/operating_system
https://w3techs.com/technologies/history_overview/operating_system
http://openvswitch.org/releases/openvswitch-2.7.0.tar.gz
http://openvswitch.org/releases/openvswitch-2.7.0.tar.gz
https://aws.amazon.com
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.13.tar.xz
https://github.com/curl/curl
https://github.com/ChromeDevTools/awesome-chrome-devtools
https://github.com/ChromeDevTools/awesome-chrome-devtools
http://sebastien.godard.pagesperso-orange.fr/
http://home.tiscali.cz/~cz210552/webbench.html

14

for large-scale RDMA deployments,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 523–536.

[44] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM
SIGCOMM computer communication review, vol. 40, no. 4. ACM,
2010, pp. 63–74.

[45] Z. Niu, H. Xu, D. Han, P. Cheng, Y. Xiong, G. Chen, and K. Winstein,
“Network Stack as a Service in the Cloud,” in Proceedings of The 16th
ACM Workshop on Hot Topics in Networks (HotNets 17). ACM, 2017.

[46] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana,
R. Mittal, M. Alizadeh, and H. Balakrishnan, “Restructuring endpoint
congestion control,” in Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM 2018.
ACM, 2018, pp. 30–43.

[47] A. Narayan, F. Cangialosi, P. Goyal, S. Narayana, M. Alizadeh, and
H. Balakrishnan, “The case for moving congestion control out of the
datapath,” in Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, (HotNets 16). ACM, 2017, pp. 101–107.

Yuxiang Zhang received his the BEng, and MEng
degree from Jinan University, China, in 2015 and
2018 respectively. He is currently a research assistant
at University of Macau. He has broad interests in
networking systems, with focuses on the area of
datacenter networking and network optimization.

Lin Cui is currently with the Department of
Computer Science at Jinan University, Guangzhou,
China. He received the Ph.D. degree from City
University of Hong Kong in 2013. He has broad
interests in networking systems, with focuses on the
following topics: cloud data center resource man-
agement, data center networking, software defined
networking (SDN), virtualization and so on.

Fung Po Tso received his BEng, MPhil and PhD
degrees from City University of Hong Kong in
2006, 2007 and 2011 respectively. He is currently
lecturer in the Department of Computer Science
at the Loughborough University. Prior to joining
Loughborough, he worked as SICSA Next Gener-
ation Internet Fellow at the School of Computing
Science, University of Glasgow during 2011-2014
and lecturer in Liverpool John Moores University
during 2014-2017. He has published more than 20
research articles in top venues and outlets. His

research interests include: network policy management, network measurement
and optimisation, cloud data centre resource management, data centre net-
working, software defined networking (SDN), distributed systems as well as
mobile computing and system.

Quanlong Guan received the MS and PhD degrees
from Jinan University, China, in 2006 and 2014.
He is currently a professor of engineering in Jinan
University. He is directing the Guangdong R&D
Institute for the big data of service and application
on education. His research interests include network
security, big data protection and processing. Current
and prior work includes analytics for network log
and security, big data application and mobile se-
curity. His research has been funded by National
Natural Science Foundation of China, Guangdong

Key Technologies R&D Program of China.

Weijia Jia is currently a Chair Professor, Deputy
Director of State Kay Laboratory of Internet of
Things for Smart City, Head of Center of Data
Science at the University of Macau. He has been
Zhiyuan Chair Prof at Shanghai Jiaotong University,
China (where he received 2013 China 1000 Talent
Award). He received BSc/MSc from Center South
University, China in 82/84 and Master of Applied
Sci./PhD from Polytechnic Faculty of Mons, Bel-
gium in 92/93, respectively, all in computer science.
For 93-95, he joined German National Research

Center for Information Science (GMD) in Bonn (St. Augustine) as research
fellow. From 95-13, he worked in City University of Hong Kong as a full
professor in Computer Science Dept. His research interests include smart city;
next generation IoT, knowledge graph constructions; multicast and anycast
QoS routing protocols, wireless sensor networks and distributed systems.
In these fields, he has over 500 publications in the prestige international
journals/conferences and research books and book chapters. His contributions
can be summaried from the aspects of vertex cover and efficient anycast
for optimal placement and routing of severs/sensors in many applications of
IoT/sensor/wireless networks and the Internet. He has received Best Product
Awards from the Internatonal Science&Tech. Expos (Shenzhen) in 2011/2012
and 1st- Prize of Scientific Research Awards from Ministry of Education of
PR China in 2017 (list 2). He has served as area editor for various prestige
international journals, chair and PC member/keynote speaker for many top
international conferences. He is the Senior Member of IEEE and the Member
of ACM.

Jipeng Zhou u received B.Sc. degree and M.Sc.
degree from Northwest University Xian, China, in
1983 and 1988, and the Ph.D. degree from the
University of Hong Kong in 2000. From July 1983
to March 1997, he was a lecturer and an asso-
ciate professor in Northwest University Xian, China.
From Dec. 2000 to Feb. 2002, he was a Postdoctoral
fellowship in Nanyang Technology University. He
joined Jinan University in 2002, he is currently a
professor. His research areas include parallel and
distribution computing, routing protocol, location

service, channel and bandwidth assignment and energy problems to wireless
networks. He has published over 90 papers. He is a senior member of CCF
and a member of ACM.

	Introduction
	Background and Motivations
	Background
	Problem Exploration
	Observation with varying delay
	Observation with varying loss ratio
	Observation on the most suitable congestion control

	Design Goals

	Mystique Design
	Design Overview
	Monitoring Congestion Control States
	Implementing Congestion Control
	Enforcing Congestion Control
	Dynamic Congestion Control Switching
	Available Deployment Locations

	Implementation
	Evaluation
	Experiment Setup
	Deployment in VMs
	Deployment in Hypervisors
	Deployment in Routers/Switches
	Overhead

	Related Works
	Conclusions
	References
	Biographies
	Yuxiang Zhang
	Lin Cui
	Fung Po Tso
	Quanlong Guan
	Weijia Jia
	Jipeng Zhou

