
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, JANUARY 2021 1

pHeavy: Predicting Heavy Flows in the
Programmable Data Plane

Xiaoquan Zhang, Lin Cui, Member, IEEE, Fung Po Tso, Senior Member, IEEE and Weijia Jia, Fellow, IEEE

Abstract—Since heavy flows account for a significant fraction
of network traffic, being able to predict heavy flows has benefited
many network management applications for mitigating link
congestion, scheduling of network capacity, exposing network
attacks and so on. Existing machine learning based predictors
are largely implemented on the control plane of Software Defined
Networking (SDN) paradigm. As a result, frequent communica-
tion between the control and data planes can cause unnecessary
overhead and additional delay in decision making.

In this paper, we present pHeavy, a machine learning based
scheme for predicting heavy flows directly on the programmable
data plane, thus eliminating network overhead and latency to
SDN controller. Considering the scarce memory and limited
computation capability in the programmable data plane, pHeavy
includes a packet processing pipeline which deploys pre-trained
decision tree models for in-network prediction. We have imple-
mented pHeavy in both bmv2 software switch and P4 hardware
switch (i.e., Barefoot Tofino).Evaluation results demonstrate that
pHeavy has achieved 85% and 98% accuracy after receiving the
first 5 and 20 packets of a flow respectively, while being able
to reduce the size of decision tree by 5.4x on average. More
importantly, pHeavy can predict heavy flows at line rate on the
P4 hardware switch.

Index Terms—Heavy flow, Decision tree, Programmable data
plane, P4

I. INTRODUCTION

There is always a need for network operators to analyze
network traffic for improving network reliability, performance,
configuration and security management. Heavy flows, which
account for a significant fraction of network traffic [36], have
profound impact on networks as they either can cause network
congestion or indicate an ongoing DoS attack. Therefore,
identifying heavy flows correctly and promptly is of great
importance to many applications such as mitigating link
congestion [14], scheduling of network bandwidth [22] and
exposing network attacks [30].

Existing solutions for identifying heavy flows can be
broadly categorized as detection or prediction based. Good
heavy flow detectors/predictors need to consider tradeoff
among three key metrics: accuracy, timeliness and network
overhead [37]. This means that the accuracy needs to be high
enough for the predictors to be meaningful. The prediction

Xiaoquan Zhang and Lin Cui are with the Department of Computer Science,
Jinan University, Guangzhou, China. Email: zhangxiaoquan547@gmail.com,
tcuilin@jnu.edu.cn.

Fung Po Tso is with the Department of Computer Science, Loughborough
University, UK. Email: p.tso@lboro.ac.uk.

Weijia Jia with BNU-UIC Institute of Artificial Intelligence and Future
Networks, Beijing Normal University (BNU Zhuhai) and BNU-HKBU United
International College, Zhuhai, China. Email: jiawj@uic.edu.cn.

Corresponding author: Lin Cui

needs to take place as early as possible to give network
administrators sufficient early response time. For example,
FlowSeer [16] proved that prediction in early response time
can effectively enhance the performance of load balancers.
Network overhead also should be minimized to avoid impact
on normal network traffic.

Statistics-based detection schemes (e.g., Hashpipe [36],
PRECISION [12]) collect statistics for monitored flows. How-
ever, having a fixed threshold means they are not flexible
enough to cope with the dynamism of network traffic. A long
detection time is usually required before counters exceeding
the fixed threshold. Another way for detection is to sample
only a fraction of packets of target flows. However, since
monitoring overhead is inevitable in statistics collection, trade-
off between sample frequency (which affecting accuracy) and
communication overhead is still needed.

In comparison to detection, machine learning can predict
heavy flows early with high accuracy using only the first few
packets of a flow. This gives extra headroom for network
operators to take actions on the heavy flows. Most existing
machine learning methods need to leverage the SDN archi-
tecture [16] [26]. The data plane collects traffic features and
sends them to the controller, which runs machine learning
algorithms to predict heavy flows. However, such approaches
introduce unnecessary or even heavy communication overhead
and network delays due to the additional communication
between the data plane and controller, violating timeliness and
network overhead attributes above.

Clearly, achieving all three aforementioned metrics simul-
taneously is challenging. To overcome this challenge, in this
paper, we exploit the data plane programmability and propose
pHeavy, a machine learning approach for predicting heavy
flows in the programmable data plane. Our results show that
pHeavy can predict heavy flows with 85% accuracy upon
receiving only the first 5 packets of a flow. Moreover, by
predicting entirely in the data plane, pHeavy eliminates unnec-
essary communication overhead and network delays between
data plane and controller.

It is challenging to train accurate machine learning models
that are simple enough to be implemented in the programmable
data plane. First, the number of heavy flows is usually a
very small fraction of total flows albeit being accountable
for most network packets transferred [26]. Such imbalanced
distribution can mislead the construction of machine learning
models, producing inaccurate and large-sized models consum-
ing more scarce memory of switches. Second, programmable
data planes usually have limited memory and computation
power, which limits statistics collection and the deployment of

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, JANUARY 2021

prediction algorithms in the programmable data plane1 [39].
In short, this paper has made the following contributions:
1) A training algorithm is proposed to eliminate effects

of imbalanced distribution to obtain accurate models
and reduce the size of decision trees for data plane
implementation.

2) Considering limited computing resources in pro-
grammable data plane, a packet processing pipeline is
designed to track each flow’s features and predict heavy
flows, and a flow management scheme is also enforced
to optimize memory usage.

3) A prototype on P4 hardware switch (Barefoot Tofino) is
implemented. Evaluation results show that pHeavy can
predict heavy flows accurately at line rate.

The rest of paper is organized as follows. Section II gives
an overview of related works and explains challenges for
pHeavy design. Section III presents the system overview of
pHeavy. Section IV and V describe the detailed pHeavy
design, including network traffic data training and predicting
entirely in the programmable data plane. Section VI discusses
the implementation details of hardware and software switches,
Section VII shows the evaluation results and Section VIII
concludes the paper.

II. RELATED WORKS & CHALLENGES

A. Related works

Recent research works on identifying heavy flow can be
divided into two categories (see Table I): statistics-based
detector and ML-based predictor.

Statistics-based detector: These schemes are based on flow
statistics to identify heavy flows. Sampling is a commonly
used method [20], which assumes that heavy flows are more
likely to be tracked since they generate most of network traffic.
Probability sampling [34] can be used to reduce the complexity
of detection. However, in order to achieve high accuracy, the
sampling process must collect as much flow information as
possible. This could introduce high overhead between the data
plane and controller. Another way of detecting heavy flow
is to periodically collect information, e.g., Hedera [11] and
Helios [21]. Similarly, such periodically pulling of statistics
of flows may introduce significant network overhead (e.g., 1
to 20MB signaling overhead in data center network [16]) in
order to provide precise accuracy. Other works, namely heavy
hitter (e.g., Hashpipe [36], DevoFlow [17] and [13]), set up
counters in the data plane to detect heavy flow. They count
the number of packets transferred in each monitored flow.
Although they are easy to implement in switches, they require
a long detection time until the counter exceeds a pre-defined
fixed threshold. Overall, methods based on statistics can not
detect heavy flows in the early stage since they need to wait
until the heavy flow bursts.

ML-based predictor: Some works adopt machine learning
algorithms to predict heavy flow. They are usually imple-
mented in the controller of SDN networks. Pouper et al. [33]

1For example, Barefoot Tofino [4] only supports 12 stages in the pipeline
and dozens of megabytes of available memory, and does not support multi-
plication and division.

discussed predicting heavy flow by three machine learning
algorithm: neural networks, Gaussian process regression and
online Bayesian Moment Matching. Xiao et al. [38] utilized a
cost-sensitive model in decision trees to train models with high
accuracy in heavy flow prediction. FlowSeer [16] designed a
two-phase method. The first phase uses cost-sensitive decision
trees and the second phase implements data mining with the
Hoeffding tree in the controller. Huang et al. [26] proposed
a heavy flow decision scheme that consists of two stages.
The first stage uses C4.5 decision tree [35] and the second
stage adopts a more accurate machine learning algorithm
APPR [25]. However, by deploying ML-based predictors on
the controller, they inevitably introduce signaling overhead and
delay between the controller and data plane.

B. Challenges
Two important challenges must be considered in actual

design and implementation of an machine learning based
predictor for heavy flows. First, imbalanced distribution of
heavy flows can lead to an inappropriate model during training.
Second, programmable hardware data planes usually have
limited memory and computation capability. This means any
resulting models will need to be lightweight for them to be
run on the hardware data plane.

1) Imbalanced data problem in heavy flow prediction: In
practice, network traffic contains about 10% of heavy flows.
Interestingly they carry more than 90% of total packets [37].
Such extreme imbalanced distribution will mislead the classi-
fier, causing unacceptable accuracy. This is called imbalanced
data problem in machine learning [24]. Since most algorithms
assume balanced class distributions or equal misclassification
costs, these algorithms will fail to represent the distributive
characteristics of the data and result in low prediction accuracy
across the classes of imbalanced data. For example, C4.5 deci-
sion tree uses IGR (Information Gain Ratio) to select decision
features and determine branches, and features with high IGR
can be used to discriminate different classes well. However,
this mechanism does not consider the accuracy of classification
of the minority class. Furthermore, these solutions may lead
to large-sized models (Experiments in Section IV-C), which
can not be implemented in the programmable data plane with
limited memory (e.g., TCAM).

2) Offloading in the data plane: Programmable switches
usually have limited memory and computation power due to
the cost of high-speed hardware. This creates challenges for
the implementation of pHeavy. Scarce memory (e.g., few tens
of megabytes) in a switch will limit the size of machine
learning models and the number of flows it can monitor. Some
optimization techniques, such as removing inactive flows and
their associated flow status from the flow tables, could be
used to free up more memory, but programmable data planes
currently lack dynamic memory management to support such
optimization. Furthermore, most machine learning algorithms
(e.g., SVM or neural network) cannot be implemented in the
programmable data plane due to the requirement of floating
operations. Moreover, some frequently-used statistics oper-
ations such as multiplication/division and average are also
difficult to implement.

ZHANG et al.: PREDICTING HEAVY FLOWS IN THE PROGRAMMABLE DATA PLANE 3

Table I
COMPARISON OF pHeavy WITH OTHER SOLUTIONS

Type ML-based Statistics-based
Location Data plane Controller Data plane Controller

Method Decision tree Decision tree &
Hoeffding tree Heavy hitter Simple & probability

sampling

Examples pHeavy
FlowSeer [16]

Huang et al. [26]
Xiao et al. [38]

Basat et al. [13]
DevoFlow [17]
Hashpipe [36]

Netflow [20]
SIFT [34]

Detection/prediction delay Low (e.g., 90% of flows within
1.2 seconds in UNI1 dataset)

Prediction &
communication delay

High (e.g., 90.3% of flows within
2.0 seconds in UNI1 dataset) High

Switch-controller commun-
ication overhead and delays None Moderate None Heavy

Accuracy High (e.g., 20 packets with
97.6% TNR in UNI2 dataset) High Low (e.g., 20 packets with

79.5% TNR in UNI2 dataset) Low

Control Plane

Network Traffic Flow Features Models

P4 Pipeline

Phase 1: Offline Data Training（§4）

Extract Trainning
Algorithm

Compiler

Data Plane

Phase 2: Online Inference（§5）

Parser
Features

Compute & Save
Decision

Tree
Actions Deparser

Proper Models
Greedy Algorithm

Figure 1. The overview of pHeavy

III. SYSTEM OVERVIEW

This section provides an overview of pHeavy which consists
of an offline model training and online inference as illustrated
in Figure 1.

Offline Model Training: In this phase, the controller trains
machine learning models and compiles them into components
of target switches which enables prediction at runtime in
the second phase. pHeavy uses real network datasets [1]
containing network information in the transport and network
layers (e.g., in PCAP format) as the input in the first phase,
extracts features of each flow from the dataset and labels each
flow in advance.

Afterwards, pHeavy utilizes its training algorithm to train
models, in which the undersampling method randomly gen-
erates different training datasets that can train models with
different performance. It provides more options to achieve
a tradeoff between the size of models and accuracy. Since
undersampling will produce multiple trained models with
different performance, a greedy algorithm is also designed to
determine appropriate models with better performance that can
be deployed to the data plane. Lastly, the selected decision
trees will be compiled for target switches.

Online inference: The second phase is predicting heavy
flow in the programmable data plane. pHeavy uses decision
trees because of their simplicity in components (e.g., condi-
tional statements) and operations (e.g., does not need floating),
which can be easily implemented in the programmable data
plane. The pHeavy pipeline firstly extracts packet’s header by
the parser module for computing flow features, and then saves

Imbalanced Data Oversampling Undersampling

Append Data Reduce Data

Figure 2. Two sampling methods. Oversampling appends data to be balanced
dataset and undersampling reduces data to be balanced dataset.

them in registers. When the number of received packets of
a flow reaches a preset value, e.g., 5 packets, the flow will
be verified by a pre-installed decision tree and tagged with a
flag (e.g., heavy or non-heavy flow). After a flow is judged
as a certain type, its subsequent packets will not modify its
features and network operators can apply their desired actions
based on the requirements of network applications.

IV. NETWORK TRAFFIC TRAINING

This section focuses on how to train machine learning
models for pHeavy.

A. Heavy flow and metrics

Heavy flow: A flow fi is a sequence of packets with the
same 5-tuple (source IP, destination IP, source port, destination
port, protocol). Mi is denoted as the total length of packets of
fi . A subflow is denoted as f (i : j) and subsequently the first
j packets of a flow are denoted by f (1 : j).

Definition IV.1. Given a data stream consisting of a set of
flows F, a flow fi ∈ F is defined as a heavy flow with respect
to a customized threshold φ:

Mi ≥ φ

And, the occupation rate of heavy flow in F is defined as:

α =
|{ fi |Mi ≥ φ, fi ∈ F}|

|F |
(1)

Confusion matrix and metrics: Identifying heavy flows can
be seen as a binary classification, where the 0 class represents
non-heavy flow and 1 class is heavy flow. Given the two-class
case, a confusion matrix is shown in Table II.

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, JANUARY 2021

Table II
THE CONFUSION MATRIX OF BINARY CLASSIFICATION

1 0

1 True Positive (TP) False Negative (FN)

0 False Positive (FP) True Negative (TN)

True Positive (TP) means the observation is positive, and the
sample is predicted to be positive. False Negative (FN) is
that the observation is positive, but the sample is predicted
to be negative. True Negative (TN) describes that observation
is negative, and the sample is predicted to be negative. And
False Positive (FP) represents that observation is negative, but
the sample is predicted to be positive.

Two metrics are used to evaluate the accuracy: true positive
rate (TPR) and true negative rate (TNR) [33]. TPR is the ratio
of the total number of correctly classified positive samples to
the total number of positive samples, and TNR is the ratio of
the total number of correctly classified negative samples to the
total number of negative samples:

TPR =
TP

TP + FN

T NR =
T N

T N + FP

Thus, TPR and TNR represent the percentage of heavy flows
that are correctly predicted and the percentage of non-heavy
flows that are correctly predicted, respectively [33]. Therefore,
the objective of pHeavy is to achieve high TPR and TNR.

B. Network traffic features

There are many useful network traffic features revealed
from previous works [32]. Considering limitations of the
programmable data plane, pHeavy only selects features that are
feasible to be implemented in the programmable data plane.
There are two types of features: stateless and stateful features,
as shown in Table III. Stateless features refer to intrinsic
characteristics of a flow (e.g., destination TCP/UDP port).
And stateful features should be saved and computed in the
programmable data plane (e.g., total length).

Table III
NETWORK TRAFFIC FEATURES

Name Type Description
IAT_min Stateful Minimum of packet inter-arrival time

IAT_max Stateful Maximum of packet inter-arrival time

IAT_avg Stateful Average of packet inter-arrival time

IAT_total Stateful Total of packet inter-arrival time

len_min Stateful Minimum of packet length

len_max Stateful Maximum of packet length

len_avg Stateful Average of packet length

len_total Stateful Total of packet length

SYN/ACK Stateful TCP SYN/ACK flag counter

PSH/ECE/RST Stateful TCP PSH/ECE/RST flag counter

sport/dport Stateless Source/Destination port

Table IV
PERFORMANCE ANALYSIS ON IMBALANCED DATA(METRICS ARE

INTRODUCED IN SECTION IV-A AND VII-A)

10% of heavy flow in UNI2
Cost-sensitive Undersampling Oversampling

TPR 0.834 0.854 0.663
TNR 0.760 0.760 0.881

F-measure 0.537 0.546 0.567
Tree size 969 273 1083

2% of heavy flow in UNI2
Cost-sensitive Undersampling Oversampling

TPR 0.379 0.838 0.415
TNR 0.958 0.781 0.960

F-measure 0.287 0.180 0.295
Tree size 979 81 1011

C. Imbalanced data problem

Imbalanced data problem model: Assuming an imbalanced
distribution consists of a minority class and a majority class.
Considering a given dataset S, two subsets Smin ⊂ S and
Smaj ⊂ S are defined. Smin is the set of minority samples
in S and Smaj is the set of majority samples in S. And,
|Smaj | � |Smin | and |S | = |Smaj | + |Smin |.

Cost-effective learning and sampling: The basic idea of
cost-sensitive learning is the concept of cost matrix. Cost ma-
trix numerically represents the penalty of classifying samples
from one class to another. Assuming a binary classification,
the cost matrix can be defined as:

C(i, j) =
(
0 c
d 0

)
where d is denoted as the cost of misclassifying a majority
class (in heavy flow problem, setting d to 1 represents no
penalty for false negative), and c is denoted as the cost of
misclassifying a minority class. The objective of cost-sensitive
learning is to minimize overall cost on training data, and it
changes the class i of each flow f to the class j such that∑

i P(i |S)C(i, j), where P(i |S) represents the probability of
each class i for a given training dataset S. Subsequently, tuning
a cost matrix value can obtain a favorable model for training
data.

Sampling methods aim to balance the number of minority
class and majority class. Undersampling removes samples of
the majority class (e.g., random-based [3]). So,

|Snew | = |Smin | + |Smaj | − |Sunder | (2)

where Snew is defined as the new data set after sampling and
Sunder ≈ Smaj − Smin is the data set that is reduced from
the majority data set. Oversampling appends samples to the
minority class (e.g., clustering-based [24]). So,

|Snew | = |Smin | + |Smaj | + |Sover | (3)

where Sover ≈ Smaj − Smin is the data set that is appended
to minority data set. Figure 2 illustrates difference of the two
solutions. The Equation (3) implies that the new constructed
dataset will produce more complicated machine learning mod-
els, which is difficult to be executed in the data plane. In
contrast, the reduced amount of the dataset in Equation (2)
enables more simple machine learning models.

ZHANG et al.: PREDICTING HEAVY FLOWS IN THE PROGRAMMABLE DATA PLANE 5

Data trace driven analysis: To investigate the performance
of above methods, a trace driven analysis is conducted using
a real network dataset (i.e., UNI2 [1]). Information of each
flow in the dataset is analyzed and more than ten common
network features are computed based on the first 20 packets
of each flow. The cost-sensitive learning and two sampling
methods are used to predict heavy flows under two different
occupation rates, i.e., 2% and 10% [16].

Three common machine learning metrics and the size of
decision trees are used to evaluate, as shown in Table IV.
Results show that only undersampling method has the highest
TPR with the smallest tree size. However, its tree size is still
too large to be implemented in programmable data plane.
Furthermore, when the occupation rate of heavy flows is
reduced from 10% to 2%, both TPR and F-measure of all
methods are decreased, which indicates that neither of these
methods can independently handle imbalanced distribution of
heavy flow effectively. Notice that the cost-sensitive method
can obtain high TPR. Thus, pHeavy adopts a training scheme
combining the undersampling and cost-sensitive (e.g., meta-
cost [18]) methods as the fundamental algorithm to overcome
the imbalanced data problem. Experiments show that, after
going through several decision trees built by different under-
sampling training data, pHeavy can achieve the same accuracy
as the method based on controller.

D. Decision tree training

The training algorithm of pHeavy is depicted in Figure 3. Si
is defined as dataset consisting of features of subflows (f (1 :
i)), and STi and SP

i are defined as original training dataset and
verifying dataset respectively splitted from Si . sTi is subset of
STi after sampling. Ti is defined as a decision tree that predicts
heavy flows after receiving the ith packet. Four datasets are
defined to represent results of the decision tree Ti with tagging
class 0 or class 1: STi (0), STi (1), SP

i (0), and SP
i (1), where STi (0)

and STi (1) are prediction results of STi , and SP
i (0) and SP

i (1) are
prediction results of SP

i .
The whole training process consists of multiple stages as

shown in Figure 3. Each stage includes several steps. Initially,
original dataset is divided into original training dataset and
verifying dataset. The former would be reduced to the balanced
training dataset (e.g., sTi) through the two undersampling meth-
ods, i.e., OSS (One-Sided Selection) [29] and Random [3].
The OSS selects a representative subset of the majority class
to combine it with the minority class as a new training dataset,
which removes samples that have similar characteristics with
the sample of the majority class to compact the majority class.
The Random undersampling equitably balances the amount of
the majority class samples and the minority class samples.
Each randomly selected sample can only represent parts of
characteristics of the majority class, so that it generates simple
models with low TNR. Leveraging the property of Random
undersampling, pHeavy lets each flow go through one or
several simple machine learning model(s) for high TPR and
TNR. Then, the balanced training dataset is used to train a
decision tree (e.g., Ti) with high TPR and low TNR by the
cost-sensitive algorithm. In other words, the decision tree aims

Algorithm 1 Greedy searching algorithm
Input: Q, the number of tree

thr , threshold of tree score
ST = {STi ,S

T
j , ...}, training dataset

i,n, define the starting and stopping search location
E , the searching pace

Output: L, list of result consisting of decision trees
1: Starter ← i + 1
2: m← 0 //initialize number of tree
3: L ← ∅ // initialize list of result
4: while m < Q && Starter < n do
5: m← m + 1
6: j ← Starter // move j to search
7: T_list ← ∅ // save training result

// - - - search satisfied tree
8: while score_temp < thr do
9: j ← j + 1

10: T_list ← Train(STj) // training process
11: (T_temp, score_temp) ← Max(T_list .score)
12: end while

// - - - save satisfied tree
13: L.insert(0,T_temp)
14: Starter ← j

// - - - expand searching range
15: je ← E
16: while je > 0 do
17: je ← je − 1
18: j ← j + 1
19: T_list ← Train(STj)
20: (T_temp, score_e) ← Max(T_list .score)
21: if score_e > score_temp then
22: L.pop(0)
23: L.insert(0,T_temp)
24: Starter ← j
25: end if
26: end while
27: end while

to filter non-heavy flows but maintain as many heavy flows as
possible. Next, in each prediction step, the decision tree will
give two predicted results: class 0 (non-heavy flow) or class 1
(heavy flow). The dataset with class 0 will be classified as non-
heavy flow, and the dataset with class 1 will become a new
prediction dataset (e.g., STj) for the next stage. To increase
accuracy of subsequent training models, pHeavy also predicts
the training data (e.g., SP

i) and utilizes the results as the new
training dataset (e.g., SP

j) in next stage. It will delete the flows
whose characteristic has been integrated in the decision tree,
so that the Random undersampling method would not select
them in the next stage.

E. Selecting decision trees

The Random undersampling method will produce multiple
datasets to train decision trees with different performance. To
obtain better performance with limited resource consumption
in the data plane, pHeavy adopts a greedy searching algorithm

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, JANUARY 2021

Spilt
Undersampling Cost-sensitive Tree

Drop

Not Heavy Flow

Predict

Predict

Undersampling

Predict

Cost-sensitive Tree

Not Heavy Flow
Predict

Drop

...

Undersampling Cost-sensitive Tree

Predict

Heavy Flow

Not Heavy Flow

Figure 3. The training algorithm consists of several stages, each of which generates a decision tree, a training dataset and a predicted dataset for next stage
(marked by red), until the final stage determines heavy flow

(see Algorithm 1) to select several optimized decision trees in
certain locations (e.g., ith packet).

Criterion for tree selection: pHeavy selects a decision tree
based on three conditions: small size, high TPR and high TNR.
A score is calculated based on these three conditions for all
decision trees. Then, a tree will be selected if its score exceeds
a predefined threshold.

Greedy searching algorithm: A greedy algorithm is de-
signed to select specific number (e.g., Q) of decision trees
satisfying the criterion (e.g., thr) in a searching range (e.g., i
to n) as early as possible. Our primary experimental analysis
has shown that small interval between predicting locations of
two decision trees may decrease the performance of the later
trees. To address the problem, a variable E is used as the pace
to expand searching range to improve performance when a
satisfied tree is found.

To show the effectiveness of the greedy algorithm, we
also implement a random method for decision tree selection,
which will randomly select four predicting locations and each
location has a trained decision tree.

V. PREDICTION IN DATA PLANE

This section explains how online inference works and
addresses limitations in the data plane of P4 switch.

A. Online inference in the pipeline

The processing pipeline of online inference in the pro-
grammable data plane is illustrated in Figure 4.

Parser: The parser component parses packet headers which
are used to extract and compute features, e.g., TCP flags. This
information will traverse with the packet to following stages.

Ingress & Egress: A packet will be firstly hashed to a
corresponding flow and then be processed differently: (i) if the
packet is attached with termination TCP flags or it exceeds IAT
limit, its corresponding flow’s memory space will be initialised

(e.g., set to 0); (ii) if the flow has been categorized as a heavy
flow, predefined actions (e.g., driving flows to leisure links
for load balancing [16]) will be applied; (iii) the update of
corresponding flow’s features and prediction by a decision
tree (e.g., T5) will be triggered when it satisfies predefined
conditions (e.g., the arrival of the 5th packet). In the end
of the pipeline, all packets need to be deparsed for packet
construction before their departure.

Computing components: pHeavy uses 5 tuples of a packet,
i.e., {source IP address, destination IP address, source port,
destination port, protocol}, to uniquely identify a flow by hash
algorithms which P4 supports. In addition, P4 switch offers
timestamps when the packet enters the ingress pipeline, which
can be used to compute the time related variables (e.g., IAT).

All features are stored in registers and computed by basic
operations supported by P4 (e.g., addition, subtraction, hash).
For example, the value of ACK flag counter will be increased
if the ACK flag of an incoming packet is set. Since P4 does
not support division operation, pHeavy uses exponentially
weighted moving average (EWMA) to implement average
operation [15]. The EWMA can be represented as:

St =

{
y1, t = 1
α · yt + (1 − α) · St−1, t > 1

Let α = 0.5, which can be implemented through bit shift.

B. Compilation of decision tree in the P4 switch

P4 allows metadata traversing through different stages in
the pipeline. Once prediction is triggered, pHeavy fetches the
values of features from registers and saves them in metadata
as inputs of the decision trees in following stages.

There are two ways to realize decision trees in the data
plane: (i) Decision trees can be implemented in the control

ZHANG et al.: PREDICTING HEAVY FLOWS IN THE PROGRAMMABLE DATA PLANE 7

Parser

Ethernet

IPv4

TCP UDP

TCP.ack_flag

TCP.dport

IPv4.totalLen

Hash()
{

Protocol;
Srcaddr;
Dstaddr;
Srcport;
Dstport

}
IAT limit or

Terminal flag

Already being
heavy flow or not

Initialise memory space

Predefined actions
(e.g., QoS policies)

Update flow features

Deparser

Need to predict ...

Ingress & Egress

Deparser

Deparser

Deparser

Timestamp_reg.Action

Initialise
 variables Hash tcp flag

=FIN/RST TCP_flag=1 1st_flag=
reg.value

reg.value=0

if(reg.value=0)

if(TCP_flag=1)

IAT_flag=
reg_value

IAT_flag=1

IAT>600s reg.value=
ingress_time

IAT_flag=1 ||
 1st_flag=0 ||
TCP_flag=1

YES

NO YES

NO

First_packet_reg.Action

reg.value=1

Tofino pipeline

NO

Update
flow

features

Initialise
memory spaceYES

packet of Flow 1

packet of Flow 2

packet of Flow 3

packet of Flow 1

packet of Flow 2

packet of Flow 3

Figure 4. pHeavy ’s pipeline and the process of flow management in the P4 hardware switch

flow block using variables and the conditional statement (i.e.,
if and else). Variables store the value of nodes of the decision
tree, and the function of conditional statements resemble
branches. For example, assuming a node dport > 1234, the
variable saves the value 1234 and pHeavy uses if and else to
control different executions. (ii) Each root node of a decision
tree is a result of prediction, and it is destined by all features
of the decision tree which have specific value ranges. For
example, the prediction result of a node is a heavy flow, and
the values of all features satisfying the result are A ∈ [a1,a2]
and B ∈ [b1, b2], etc. This process is similar to the flow
table in P4 switch using range matching. Each entry in the
table has match fields and actions. The match fields can be
represented as features’ value range and the actions will set
the prediction result of flows (e.g., flag). Thus, a decision tree
can be transferred into a table with different entries in the
pipeline. The larger the decision tree, the more table entries
are required, thereby consuming more memory (e.g., TCAM).

A flow needs to go through one or several decision trees in
order to reach an identification (e.g., Ti, ...,Tn). In other words,
except for the final decision tree, all intermediate decision trees
do not identify any heavy flows, but can make decisions on
non-heavy flows. Hence, pHeavy uses three flags to tag it.
Flag 0 means a flow is undetermined and needs continuous
monitoring. Flag 1 and flag 2 represent non-heavy flow and
heavy flow respectively. Figure 4 gives an example of three
distinct flows that traverse the pipeline. For each flow, the
verification of each decision tree happens only once when the
switch receives the ith packet of the flow. For example, the 5th
packet of flow 1 (red dashed line) and the 20th packet of flow
2 (blue dashed line) are predicted by T5 and T20 respectively.

C. Memory management

Since the number of registers is much smaller than the
number of flows, pHeavy adopts a memory management
strategy to allocate memory dynamically.

There are two rules indicating termination or expiration of a
flow. Considering a TCP flow sending signal packets to inform

connection termination (e.g., FIN flag and RST flag), pHeavy
exploits these TCP flags as the sign of termination of a flow.
Upon receiving a packet with such termination flags, a flag
of its corresponding row space in the register of the flow will
be set, indicating the register is released. On the other hand,
real network trace [1] shows that some flows only transfer
few packets without any termination TCP flags. Therefore,
pHeavy uses interval arrival timeout as another signal of flow
termination (i.e., pHeavy sets IAT>600 seconds). Due to the
lack of packets with termination flags, an expiration flag can
only be tagged by other flows which hash to the same slot.
Once hash collision happens and the register space is full, a
new flow can reuse the memory space of the original flow that
has been expired or terminated.

VI. IMPLEMENTATION

We have implemented pHeavy on bmv2 [5] consisting of
over 700 lines of P416 code (including several decision trees
with maximum depth 10), and P4 hardware switch (Flnet
S9180-32X) with a 3.2Tb/s Barefoot Tofino 32D ASIC [4].

A. Offline model training

UNIBS dataset: The UNIBS dataset [9] [19] [23] were
collected on the edge router of the campus network of Brescia
University during three consecutive working days. We use the
day3 traffic trace which is mainly composed of TCP (99%)
and UDP to evaluate pHeavy.

UNI dataset: The UNI dataset [1] has two packet traces
from two university data centers, UNI1 and UNI2. The major
traffic in UNI1 is TCP traffic. By contrast, most heavy flows
are UDP traffic in UNI2. Although the number of TCP flags
would not be useful in the UDP flow, experiments in UNI2
show that pHeavy also performs well in UDP flows.

Model training: The model training is completed in Weka
3 [10]. pHeavy uses dpkt [2] to extract features of network
traffic and RandomUnderSampler [3] to mitigate imbalanced
data problem. scikit-learn [7] is used to split dataset into

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, JANUARY 2021

training dataset (70%) and testing dataset (30%) for the
method “holdouts” validation [27] [31].

Threshold: The value of a threshold will affect the number
of flows that are recognized as heavy flows, and hence impacts
the accuracy of prediction. However, there is no unanimous
value for the threshold. For example, Helios [21] defined
heavy flow with flow rate below 15Mbps, and Devoflow [17]
defined three thresholds with different values (128KB, 1MB
and 10MB). To satisfy the needs of different networking
environments, pHeavy allows network operators setting the
threshold, e.g., occupation rate α (Section IV-A), for heavy
flow according to their requirements.

B. pHeavy in the P4 hardware switch

Following aspects are considered when implementing
pHeavy on a Barefoot Tofino P4 hardware switch.

Register operation: In P4 hardware switches, all operations
on the same Register must be in the same stage. For example,
in the update of a Register used to save the feature value, it
may require several operations: reading the value, calculation
and writing a new value. pHeavy adopts the Register Action
block provided by P416(Tof ino) to aggregate all operations for
a Register in the same stage.

Features: Since Barefoot Tofino only offers limited opera-
tions, pHeavy only uses a small part of flow features, as shown
in Table III. In the experiment, it was found that the prediction
has close accuracy with prediction in the software switch
and the size of decision trees is only marginally increased
(e.g., 5% in UNIBS dataset). Table V lists the top three
important features in each decision tree based on information
gain ratio [35], showing which feature is more important in
the prediction. In dataset UNI1, TCP flags are important fea-
tures in software switches (bmv2) and P4 hardware switches
(Tofino). In comparison, UNI2 prefers length and IAT features
since the dataset mainly consists of UDP traffic.

Memory management in P4 hardware switch: There are
two major challenges for implementing memory management
in Barefoot Tofino: (i) Due to the limited number of stages
(e.g., 12 stages) in the pipeline, pHeavy needs to use as
few stages as possible to save space for other applications.
(ii) Although Register Action allows programmers to access
Register multiple times, the Register Action block can not be
split into sub-blocks for using at different stages.

To overcome the two challenges, pHeavy defines two
Registers and three flag variables. The two Registers, i.e.,
First_packet_reg and Timestamp_reg are shown in the
two dotted boxes in Figure 4. First_packet_reg is used to
record whether the packet is the first packet of a flow, and
Timestamp_reg records the last packet’s arrival time of a
flow. In the meantime, three flag variables, i.e., I AT_ f lag,
1st_ f lag and TCP_ f lag, are used to determine whether the
memory space need to be initialised by three conditions: (i)
exceeding IAT threshold, (ii) arrival of the first packet of a
flow and (iii) receiving TCP termination flags.

The process of memory management in the pipeline is
shown in Figure 4. A packet attached with TCP termination
flags can trigger memory initialisation, setting the variable

Table V
TOP THREE IMPORTANT FEATURES IN DECISION TREES

UNI1 UNI2
of packets bmv2 Tofino (TCP) # of packets bmv2

6th
IAT_max

dport
IAT_total

PSH
SYN

len_max
5th

dport
IAT_max
len_min

8th/9th
len_avg

dport
ACK

ACK
len_total

SYN
7th

len_max
len_avg
len_total

14th
SYN
dport
ACK

ACK
dport
SYN

14th
IAT_total
len_min
IAT_avg

20th
ACK
PSH

len_avg

dport
ACK 20th

IAT_avg
IAT_total
len_max

TCP_ f lag to 1. If it directly initialises memory space, the
termination packet will be the first packet of a new flow
hashed in the same memory space, i.e., the next packet will
be the real first packet. Thus, pHeavy uses First_packet_reg
to record whether the packet is the first packet after pro-
cessing TCP termination packets. In the Register Action of
First_packet_reg, the TCP termination packet (TCP_ f lag =
1) will set the value of the Register to 0. Then the next
packet (i.e., the first packet of a flow) fetches the value of
First_packet_reg (now equals 0) to initialise memory space
while setting the value of First_packet_reg to 1 for updating
subsequent packets. Afterwards, in the Register Action of
Timestamp_reg, a packet’s arrival time (e.g., ingress times-
tamp) will be used to judge whether it triggers memory ini-
tialisation. If the IAT threshold has been exceeded, I AT_ f lag
will be set to 1 while updating the value of Register , and
the packet is the first packet of a new flow on this condition.
Otherwise, only update the value of Register . In the end of
the process, values of these three flags will determine whether
to perform feature updating or memory initialising operations.

VII. EVALUATION

In this section, we evaluate the performance of pHeavy in
both software switch (i.e., bmv2) and P4 hardware switch (i.e.,
Barefoot Tofino).

A. Performance metric and comparison schemes

F-measure: Since the change of occupation rate may not
effect TPR and TNR, these two metrics can not correctly
reflect the performance of classifiers in imbalanced dataset.
F-measure (β = 1) is a metric widely used to evaluate binary
classification. F-measure metric combines precision and recall
as an effectiveness measure of classification, defined as:

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
F-measure has more insights into the functionality of a classi-
fier. It is very sensitive to the rate of imbalance of dataset [28].
The value of F-measure will be attenuated severely by more
skewed distributions. Therefore, to evaluate the performance
of pHeavy in extremely imbalanced distribution, F-measure

ZHANG et al.: PREDICTING HEAVY FLOWS IN THE PROGRAMMABLE DATA PLANE 9

5th 7th 14/16th 20th
of packets

0.2

0.4

0.6

0.8

1.0
Ra

te

2%_TPR
2%_TNR
10%_TPR
10%_TNR

Figure 5. pHeavy selects four decision trees in different locations for
prediction when α = 10% and α = 2% respectively

5th 7th 14th 20th
of packets

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TN
R

pHeavy
Heavy hitter

Figure 6. Comparison of TNR with heavy hitter

can be used to evaluate the same dataset with two occupation
rates of heavy flow (α = 2% and α = 10%).

Heavy hitter: Heavy hitter [36] is a common method based
on counters for heavy flow detection in the data plane. It can
be easily integrated into switches but has a long detection time.
Thus, we compare the TNR of pHeavy and heavy hitter after
receiving few packets of each flow.

Machine learning in the controller: APPR [25] is a ma-
chine learning scheme for predicting network traffic. Previous
work has run APPR algorithm in the controller to identify
heavy flows [26] since it has high accuracy of prediction
by only few packets of a flow. Considering the imbalanced
data problem, random undersampling is performed on training
data to keep the same number of minority and majority when
training models by APPR.

B. Performance in P4 software switch

Accuracy: Figure 5 shows the training performance of
pHeavy on both TPR and TNR. The experiment is conducted
on UNI2 dataset. pHeavy arranges four decision trees for
prediction in different locations, i.e., the prediction happens in
the 5/7/14/20th packet when α = 2% and the 5/7/16/20th
packet when α = 10% respectively. The result shows that

pHeavy can keep high TPR while obtain high TNR. TPR
decreases while TNR increases when a flow receives more
packets. The reason is that each decision tree aims to keep
high TPR while increasing TNR as high as possible. The first
decision tree has a high TNR, partially contributed by correctly
identifying flows not exceeding four packets, and these flows
can be erased by the memory management subsequently.

Comparison with heavy hitter: Figure 6 shows the speed of
prediction for pHeavy and heavy hitter. As we can see from
this figure, heavy hitter is able to achieve 70% TNR because of
the existence of short-lived flows. The TNR for both schemes
grows steadily as more packets enter the switch, but our
pHeavy consistently has more than 15% better performance.

Comparison with machine learning in controller: We
next compare the performance of pHeavy and APPR. This
experiment evaluates three metrics, including TPR, TNR and
F-measure, and is conducted on the three datasets (UNI1,
UNI2 and UNIBS) with two occupation rates (α = 10%
and α = 2%). Results in Figure 7 shows that pHeavy has
comparable performance with APPR. First, both pHeavy and
the APPR algorithm have high TPR and TNR. Second, pHeavy
has good performance in F-measure when comparing with
APPR. The value of F-measure is attenuated in pHeavy and
APPR when the occupation rate of heavy flow declines. It is
worth noting that pHeavy has a higher F-measure value when
α = 2%. This is because the flow memory management of
pHeavy filters out a portion of flows that meet the termination
conditions before triggering the prediction of the decision
tree. However, the core idea of APPR is defining “application
layer round”, which largely extends the number of available
features to increase accuracy. Thus, APPR is inappropriate
to be implemented in the data plane as it requires so many
features and produces complicated machine learning models.

C. Performance in the P4 hardware switch

Our testbed for evaluating pHeavy’s performance in P4
hardware switch consists of two servers (equipped with 8
Intel Core i7-4771 CPU @ 3.50GHz), each configured with a
10Gbps NIC, and a P4 hardware switch (Flnet S9180-32X with
Barefoot Tofino) connecting the servers. One server is used to
replay real TCP network traffic (i.e., UNI1 and UNIBS) via
Linux network traffic tool Tcpreplay [8], and the other one is
responsible to receive the replayed packets.

Predicting at line rate: To evaluate the through-
put of pHeavy, a simple switching application named
basic_switch [4] is implemented for baseline comparison.
iperf is used to measure throughput between the two servers.
As we can see in Figure 8(a), pHeavy achieves an average
throughput of 9.412Gbps, which is only 0.01% slower than
9.413Gbps achieved by the basic_switch. This clearly demon-
strates that pHeavy is able to work at line rate.

Flow Prediction Time: Flow prediction time refers to the
time interval between receiving the first packet of a flow to
predicting it as a heavy flow or a non-heavy flow. Flows that do
not trigger prediction (e.g., the number of packet is less than
5) are not included. We also implement heavy hitter which
maintains a counter for each flow and set its threshold to the

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, JANUARY 2021

TPR TNR F-measure
0.0

0.2

0.4

0.6

0.8

1.0
Ra

te
UNI1_pHeavy
UNI1_APPR(controller)
UNI2_pHeavy
UNI2_APPR(controller)
UNIBS_pHeavy
UNIBS_APPR(controller)

(a) 10% of heavy flow

TPR TNR F-measure
0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

UNI1_pHeavy
UNI1_APPR(controller)
UNI2_pHeavy
UNI2_APPR(controller)
UNIBS_pHeavy
UNIBS_APPR(controller)

(b) 2% of heavy flow

Figure 7. Comparison of pHeavy and APPR algorithm by three metrics

���� ���� ���� ���� ���� ���� ���� ���	
����!���! �������

���

���

��

���

�
�

� ����"$

������#� ��

(a) Throughput of pHeavy and a simple use case
in P4 hardware switches

100 102 104

Time (ms) in log-scale
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Heavy hitter(UNIBS)
Heavy hitter(UNI1)
pHeavy(UNI1)
pHeavy(UNIBS)

(b) Comparison of pHeavy and heavy hitter in flow
predicting time

100 101 102 103

Time (ms) in log-scale
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

6th
9th
14th
20th

(c) Flow prediction time at different locations
(UNI1)

Figure 8. Performance on the P4 hardware switch

number that is the same as the position of the last decision
tree (i.e., 20th) in pHeavy for comparison. Figure 8(b) shows
the CDF of flow predicting time of both pHeavy and heavy
hitter with UNI1 and UNIBS datasets. Evaluation results show
that about 90% of flows can be predicted within 1.2s in UNI1
dataset. And the average flow prediction time is 2.6s and 10.3s
for UNI1 and UNIBS respectively. In comparison, the time
for heavy hitter is 7.9s and 31.8s respectively. Thus, pHeavy’s
prediction time is 3x faster than heavy hitter on average. In
the UNIBS dataset, flow predicting time of pHeavy increases
because the dataset consists of many SSH tunnel flows that
only transfer dozens of packets over tens of seconds. It is
noted that heavy hitter has very low TNR (e.g., about 80%
TNR in 20th packets, as shown in Figure 6) when it has the
same predicting location with pHeavy.

In addition, Figure 8(c) shows flow predicting time in
different predicting locations (i.e., 6th , 9th , 14th and 20th).
As expected, the earlier the location of prediction, the shorter
the flow predicting time. Flow predicting times of over 91% at
the 6th and 9th packets, 84.7% at the 14th packets, and 75.4%
at the 20th packets are completed within 1s.

D. Optimization for the programmable data plane
Selection of decision trees: pHeavy adopts a greedy algo-

rithm to select decision trees. To show the effectiveness of

��

�������� ����
���

���

���

���

���

��

�

�����
������

�

��

��

��

��

���

	�
��

�
��

��
��

��
��

��
��

���
��

Figure 9. Comparison of random algorithm and greedy algorithm for decision
tree selection

the selection algorithm, a random method is also designed for
comparison. As shown in Figure 9, although the two methods
have the same F-measure value, the greedy algorithm has a
higher TPR while smaller accumulated size of decision trees.
Thus, the greedy algorithm can effectively select decision trees
to be implemented in the data plane.

Optimization on the size of decision trees: Figure 10
shows the performance of the training algorithm for both
pHeavy and APPR in terms of the size of decision trees (e.g.,

ZHANG et al.: PREDICTING HEAVY FLOWS IN THE PROGRAMMABLE DATA PLANE 11

5th 7th 14th 20th
of packets

0

20

40

60

80

100

Si
ze

 o
f t

re
es

APPR(controller)
Accumulated amount(pHeavy)
pHeavy

Figure 10. Comparison of the size of decision trees with APPR algorithm

5 10 15 20 25 30 35 40 45 50 55 60
Time(minute)

5

10

15

20

25

30

Ov
er
al
l m

em
or
y
co
ns
um

pt
io
n
(/M

B)

Without flow management
Flow management

Figure 11. The overall memory consumption in different time conducted by
UNI2 dataset

amounts of nodes). Decision trees produced by pHeavy are
smaller by 5.4x on average than that of APPR. Although the
accumulated size in pHeavy is close to that of APPR, pHeavy
shares computation of prediction in a flow with several smaller
predictions in different packet locations, which effectively
enables it to avoid effects of processing per packet in the data
plane. Thus, pHeavy improves the feasibility of implementing
decision trees in the programmable data plane.

Optimization on the amount of stored flows: Since the
scarce memory in the programmable data plane limits the stor-
age of flows, we also study the number of flows that pHeavy
can concurrently classify by giving a certain memory. Similar
to [15], the number of concurrent flows is estimated according
to the given memory divided by total bits of information to be
stored per-flow. Storing all mentioned features of each flow,
pHeavy can handle about 200 thousands of concurrent flows
per 10MB memory. Furthermore, Figure 11 shows overall
memory consumption that pHeavy needs to provide in different
time spots during experiments. pHeavy only requires 5MB
memory in the P4 software switch to store all features of up
to 100k active flows. Thus, pHeavy is able to schedule the

memory usage effectively and dynamically.

VIII. CONCLUSION

In this paper, we present pHeavy which predicts heavy
flow via machine learning algorithm in the programmable data
plane. pHeavy consists of two phases, offline model training
and online inference. In the first phase, pHeavy proposes a
training algorithm to tackle the imbalanced data problem while
minimizes the size of trees to implement in the data plane. In
the second phase, pHeavy provides memory management to
increase the amount of concurrent flow, and replaces unsup-
ported operations with approximate values. Experiment results
show that pHeavy can effectively predict heavy flow in early
stages with high accuracy at line rate.

There is an open problem in pHeavy that is worth exploring
further. The data plane is hard to install machine learning
models that are trained by large dataset (e.g., several days
network traffic), due to the large size of decision trees. A
solution is to split large traffic into several parts based on
periods of time, and the controller (e.g., P4 runtime [6]) can
dynamically configure and modify machine learning models.

ACKNOWLEDGMENT

This work has been partially supported by Chinese Na-
tional Research Fund (NSFC) No. 61772235 and 61872239;
Natural Science Foundation of Guangdong Province No.
2020A1515010771; Science and Technology Program of
Guangzhou No. 202002030372; The UK Engineering
and Physical Sciences Research Council (EPSRC) grants
EP/P004407/2 and EP/P004024/1; InnovateUK grant 106199-
47198; Guangdong Key Lab of AI and Multi-modal Data Pro-
cessing; BNU-UIC Institute of Artificial Intelligence and Fu-
ture Networks funded by Beijing Normal University (Zhuhai)
and AI-DS Research Hub.

REFERENCES

[1] Data set for IMC 2010 data center measurement. http://pages.cs.wisc.
edu/~tbenson/IMC10_Data.html. Accessed on: June 20, 2021.

[2] dpkt 1.9.2 documentation. https://dpkt.readthedocs.io/en/latest/. Ac-
cessed on: June 20, 2021.

[3] imblearn.under_sampling.randomundersampler. https:
//imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_
sampling.RandomUnderSampler.html. Accessed on: June 20, 2021.

[4] Intel tofino series programmable ethernet switch asic.
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series/tofino.html. Accessed
on: June 20, 2021.

[5] p4lang/behavioral-model. https://github.com/p4lang/behavioral-model.
Accessed on: June 20, 2021.

[6] p4lang/pi: An implementation framework for a p4runtime server. https:
//github.com/p4lang. Accessed on: June 20, 2021.

[7] scikit-learn machine learning in python. https://scikit-learn.org. Ac-
cessed on: June 20, 2021.

[8] Tcpreplay - pcap editing and replaying utilities. https://tcpreplay.
appneta.com/. Accessed on: June 20, 2021.

[9] Unibs: Data sharing. http://netweb.ing.unibs.it/~ntw/tools/traces/. Ac-
cessed on: June 20, 2021.

[10] Weka the workbench for machine learning. https://www.cs.waikato.ac.
nz/ml/weka/. Accessed on: June 20, 2021.

[11] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, Amin Vahdat, et al. Hedera: dynamic flow scheduling
for data center networks. In NSDI, volume 10, pages 89–92, 2010.

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, JANUARY 2021

[12] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich.
Designing heavy-hitter detection algorithms for programmable switches.
IEEE/ACM Transactions on Networking, 2020.

[13] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Optimal
elephant flow detection. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pages 1–9. IEEE, 2017.

[14] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
Microte: Fine grained traffic engineering for data centers. In Proceedings
of the Seventh COnference on emerging Networking EXperiments and
Technologies, pages 1–12, 2011.

[15] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias
Bühler, and Laurent Vanbever. pforest: In-network inference with
random forests. arXiv preprint arXiv:1909.05680, 2019.

[16] Shou-Chieh Chao, Kate Ching-Ju Lin, and Ming-Syan Chen. Flow
classification for software-defined data centers using stream mining.
IEEE Transactions on Services Computing, 12(1):105–116, 2016.

[17] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagan-
dula, Puneet Sharma, and Sujata Banerjee. Devoflow: Scaling flow
management for high-performance networks. In Proceedings of the ACM
SIGCOMM 2011 conference, pages 254–265, 2011.

[18] Pedro Domingos. Metacost: A general method for making classifiers
cost-sensitive. In Proceedings of the ACM SIGKDD conference, pages
155–164, 1999.

[19] Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. Quantifying
the accuracy of the ground truth associated with internet traffic traces.
Computer Networks, 55(5):1158–1167, 2011.

[20] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building
a better netflow. ACM SIGCOMM Computer Communication Review,
34(4):245–256, 2004.

[21] Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman,
George Papen, and Amin Vahdat. Helios: a hybrid electrical/optical
switch architecture for modular data centers. In Proceedings of the
ACM SIGCOMM 2010 conference, pages 339–350, 2010.

[22] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jen-
nifer Rexford, and Fred True. Deriving traffic demands for operational
ip networks: Methodology and experience. IEEE/ACM Transactions On
Networking, 9(3):265–279, 2001.

[23] Francesco Gringoli, Luca Salgarelli, Maurizio Dusi, Niccolo Cascarano,
Fulvio Risso, and KC Claffy. Gt: picking up the truth from the ground
for internet traffic. ACM SIGCOMM Computer Communication Review,
39(5):12–18, 2009.

[24] Haibo He and Edwardo A Garcia. Learning from imbalanced data.
IEEE Transactions on knowledge and data engineering, 21(9):1263–
1284, 2009.

[25] Nen-Fu Huang, Gin-Yuan Jai, Han-Chieh Chao, Yih-Jou Tzang, and
Hong-Yi Chang. Application traffic classification at the early stage by
characterizing application rounds. Information Sciences, 232:130–142,
2013.

[26] Yuan-Hao Huang, Wen-Yueh Shih, and Jiun-Long Huang. A
classification-based elephant flow detection method using application
round on sdn environments. In 19th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 231–234. IEEE, 2017.

[27] Nathalie Japkowicz. Assessment metrics for imbalanced learning.
Imbalanced learning: Foundations, algorithms, and applications, pages
187–206, 2013.

[28] László A Jeni, Jeffrey F Cohn, and Fernando De La Torre. Facing
imbalanced data–recommendations for the use of performance metrics.
In 2013 Humaine association conference on affective computing and
intelligent interaction, pages 245–251. IEEE, 2013.

[29] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced
training sets: one-sided selection. In ICML, volume 97, pages 179–186.
Nashville, USA, 1997.

[30] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characterization
of network-wide anomalies in traffic flows. In Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, pages 201–206,
2004.

[31] Victoria López, Alberto Fernández, and Francisco Herrera. On the
importance of the validation technique for classification with imbalanced
datasets: Addressing covariate shift when data is skewed. Information
Sciences, 257:1–13, 2014.

[32] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for
internet traffic classification using machine learning. IEEE communica-
tions surveys & tutorials, 10(4):56–76, 2008.

[33] Pascal Poupart, Zhitang Chen, Priyank Jaini, Fred Fung, Hengky Su-
santo, Yanhui Geng, Li Chen, Kai Chen, and Hao Jin. Online flow size

prediction for improved network routing. In IEEE 24th International
Conference on Network Protocols (ICNP), pages 1–6. IEEE, 2016.

[34] Konstantinos Psounis, Arpita Ghosh, Balaji Prabhakar, and Gang Wang.
Sift: A simple algorithm for tracking elephant flows, and taking advan-
tage of power laws. In 43rd Allerton Conference on Communication,
Control and Computing, 2005.

[35] J Ross Quinlan. C4.5: programs for machine learning. Elsevier, 2014.
[36] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan

Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection entirely
in the data plane. In Proceedings of the Symposium on SDN Research,
pages 164–176, 2017.

[37] Binfeng Wang and Jinshu Su. A survey of elephant flow detection in
SDN. In 2018 6th International Symposium on Digital Forensic and
Security (ISDFS), pages 1–6. IEEE, 2018.

[38] Peng Xiao, Wenyu Qu, Heng Qi, Yujie Xu, and Zhiyang Li. An
efficient elephant flow detection with cost-sensitive in SDN. In 2015 1st
International Conference on Industrial Networks and Intelligent Systems
(INISCom), pages 24–28. IEEE, 2015.

[39] Xiaoquan Zhang, Lin Cui, Kaimin Wei, Fung Po Tso, Yangyang Ji, and
Weijia Jia. A survey on stateful data plane in software defined networks.
Computer Networks, 184:107597, 2021.

Xiaoquan Zhang Xiaoquan Zhang, born in 1993.
Currently he is a postgraduate student in Jinan
University. He received the B.E. degree in computer
science and technology from Chengdu University of
Technology, China, in 2016. His current research
interests includes stateful data plane/programmable
data plane, software-defined networking, and ma-
chine learning in computer network.

Lin Cui is currently a professor in the Department of
Computer Science at Jinan University, Guangzhou,
China. He received the Ph.D. degree from City
University of Hong Kong in 2013. He has broad in-
terests in networking systems, with focuses on cloud
data center networking, software defined networking
(SDN), NFV, programmable networking, distributed
systems and so on.

Fung Po Tso received his B.Eng., M.Phil. and Ph.D.
degrees from City University of Hong Kong in 2006,
2007 and 2011 respectively. He is currently a senior
lecturer in the Department of Computer Science at
the Loughborough University. His research inter-
ests include: network policy management, network
measurement and optimisation, service chaining,
data centre networking, software defined networking
(SDN), and edge computing.

Weijia Jia is currently a Chair Professor and Direc-
tor of BNU-UIC Institute of Artificial Intelligence
and future Networks, VP for Research of BNU-
HKBU United International College. His research
interests include smart city, IoT, knowledge graph
constructions, multicast and anycast QoS routing
protocols, wireless sensor networks, and distributed
systems. He has over 500 publications in presti-
gious international journals/conferences and research
books and book chapters.

