PROTECT: Container Process Isolation using System Call Interception

Thu Yein Win*, Fung Po Tsoi, Quentin MairT, Huaglory Tianfield®

*Faculty of Business, Computing and Applied Sciences, University of Gloucestershire, UK
TDepartment of Computer, Communication and Interactive Systems, Glasgow Caledonian University, UK
iDepartment of Computer Science, Loughborough University, UK
Email: twin@glos.ac.uk; p.tso@lboro.ac.uk; q.mair@gcu.ac.uk; h.tianfield@gcu.ac.uk

Abstract—Virtualization is the underpinning technology en-
abling cloud computing service provisioning, and container-
based virtualization provides an efficient sharing of the under-
lying host kernel libraries amongst multiple guests. While there
has been research on protecting the host against compromise
by malicious guests, research on protecting the guests against a
compromised host is limited. In this paper, we present an access
control solution which prevents the host from gaining access
into the guest containers and their data. Using system call
interception together with the built-in AppArmor mandatory
access control (MAC) approach the solution protects guest
containers from a malicious host attempting to compromise
the integrity of data stored therein. Evaluation of results
have shown that it can effectively prevent hostile access from
host to guest containers while ensuring minimal performance
overhead.

Keywords-Virtualization Security, Cloud Security, Container
Virtualization, Access Control, System Call Interception

I. INTRODUCTION

The elasticity of resource allocation in cloud computing is
mainly attributed to virtualization. The most prevalent form
of virtualization is through a hypervisor or Virtual Machine
Monitor (VMM). Hypervisors are assumed to be trustworthy
in maintaining isolation using built-in operating system (OS)
security tools. However provisioning of isolation among
them tends to incur significant performance overhead, due
to its large trusted computing base (TCB).

Container-based systems however only implement partial
isolation supporting a shared namespace augmented with
an access control mechanism that limits the ability of one
guest virtual machine (VM) to manipulate the object owned
by another VM [5]. While this allows for a light-weight
alternative, the isolation amongst guests tends to be weak.

We have recently discovered two vulnerabilities in which
system calls that are not namespace aware can be exploited:
(1) the ability to gain access to the guest containers’ internal
file-system through a running container process, and (2)the
ability to identify the processes running within the guest
container.

In this paper we propose a novel container virtualization
security approach which addresses these vulnerabilities. Us-
ing system call interception with built-in AppArmor manda-

tory access control (MAC), it ensures the isolation between
a compromised host and guest containers.
In summary, the contribution of this paper is threefold:

o We present two vulnerabilities to demonstrate a flawed
namespace isolation in the latest Linux kernel for
container virtualization.

e We design and implement a security solution which
tackles the namespace-unaware system calls vulnera-
bilities using system call interception.

« We extensively evaluate our scheme and show that it
can efficiently address these vulnerabilities with mini-
mal system overhead.

The rest of this paper is organized as follows. Section
II provides an overview of the two main virtualization
technologies, namely hypervisor-based virtualization and
container-based virtualization. Section III provides a detailed
discussion on the two recently-discovered security vulner-
abilities in container-based virtualization solutions, before
discussing the security approaches in existing research in
Section IV. The design rationale and implementation details
are discussed in depth in Section V, with its performance
discussed in Section VI. Section VII compares our approach
with other virtualization security solutions in existing re-
search, before arriving at the conclusion in Section VIII.

II. VIRTUALIZATION TECHNOLOGIES

Virtualization facilitates the sharing of a server’s phys-
ical resources through resource emulation and can be
broadly categorized into hypervisor-based virtualization, and
container-based virtualization.

Hypervisor-based virtualization enables the sharing of a
server’s physical resources through device emulation. Each
guest VM runs its own operating system, with the hypervisor
regulating their access to the underlying physical resources.
While this provides isolation between the guest VMs and
the host, it tends to incur significant performance overhead
as the number of guests increases.

Container-based virtualization overcomes this through vir-
tualizing the host operating system kernel and libraries.
This enables multiple guest containers to run on top of
the host operating system without having to install guest

operating systems themselves [10]. Isolation between the
guest containers and the host operating system is achieve
through the use of kernel namespaces and control groups
(cgroups).

Different components in a Linux operating system are
organized into six global namespaces: file-system, network,
user, IPC (inter-process communication), hostname and pro-
cess namespaces [8]. Using the chroot command, ker-
nel namespace enables the host operating system’s global
namespaces to be shared across multiple guest containers
[6].

While kernel namespaces allow a container to have its
own root directory and processes, control groups (cgroups)
facilitate the fine-grained allocation of physical resources to
a container [6].

Compared to hypervisor-based virtualization, container-
based virtualization provides reduced performance overhead
[7] and eliminates the need to install an additional kernel
for the guests.

IIT. NAMESPACE VULNERABILITIES

In current Linux kernels, the namespaces and control
groups (cgroups) provide resource isolation between host
and guest containers. However, the host can be subjected to
a “root break out” attack. This allows a root user running in
the guest container to break out and become the root user
of the host itself [11] [12].

While application sandboxing techniques such as SEC-
COMP (Secure Computing mode) have been built into
container-based virtualization solutions such as Linux Con-
tainers (LXC), they are limited in preventing the host from
identifying the processes running within the guest containers
and getting access to their root directories via the proc
directory.

We have recently discovered two security vulnerabilities,
namely host break-in and illegal container process manipu-
lation, which violate the isolation principle between the host
and the guest container. While the former allows a root on
the host to access a guest container’s file-system through
an opened container process, the latter allows the host to
identify any running container processes and manipulate
their states.

A. Host break-in

Given a guest container Containerl running on the
host LXCHost, a user space program nano with pid 1517
is executed on it. In the container’s home directory, there is
a text file called helloworld.txt containing the text as shown
in the following command line snippet.

ubuntu@Containerl:” $ nano &

[1] 1517

ubuntu@Containerl:” $ cat helloworld.txt
Hello world from root!!
ubuntu@Containerl:” $

Next we launch the host break-in attack by running the
ps command to list the current running processes, and fil-
tering out the guest container processes by their AppArmor
security context (which is 1xc_container_default).
This allows the user to identify the process’s PID and use it
to locate its entry in the proc directory. In this example, the
helloworld.txt file in the guest container has a PID of 5612
and can then be accessed from the host via /proc/5612/
root/home/ubuntu/helloworld.txt. The follow-
ing command line snippet demonstrates that the host break-
in attack has been successfully launched and the text file
helloworld.txt within the guest has been accessed.

thu@LXCHost:” $ ps —-eZ |
> lxc_container_default | grep nano
1lxc-container-default 5612 nano
thu@LXCHost:” $ cd /proc/5612/root

grep \

thu@RLXCHost:/proc/5612/root$ sudo cat /home

/ubuntu/helloworld.txt
Hello world from root!!
thu@LXCHost:/proc/5612/root$

B. lllegal Container Process Manipulation

This second vulnerability presents a more significant
threat to the guest container, as the host user does not need
to be root in order to trigger the vulnerability. Using the
same scenario, a user space program nano is executed in
the guest container’s user space as shown in the following
verbatim:

ubuntu@Containerl:”™ $ nano &
[1] 1517

Through the same technique as mentioned in the previous
subsection, the user on the host can identify the nano
process running within the guest container. Any regular
(even non-root) users can the use the obtained PID to
terminate it by executing the kill command from the host
terminal as shown in the following verbatim:

thu@LXCHost:™ $ ps -eZ | \

> grep lxc-container-default
lxc-container-default

5221 pts/2 00:00:00 nano
thu@LXCHost:” $ kill -9 5221
thu@LXCHost:™ $

This results in the termination of the nano process which
was previously running in the guest container as shown
below:

ubuntu@Containerl:~ $
[1]+ Killed nano
ubuntu@Containerl:™ $

C. Potential implications of these vulnerabilities

The presence of the above security vulnerabilities presents
significant impediments to the widespread adoption of

container-based virtualization as an alternative to hypervisor-
based virtualization.

Using the host break-in vulnerability, the host can access
the guest container files and manipulate them without the
guest’s knowledge. In addition, the host can use this to
install a malicious shell script into the guest container and
manipulate its rc.local file executed on startup. This
presents a threat to the integrity and privacy of the data
stored within the guest containers.

Similarly the presence of the illegal container process
manipulation vulnerability violates the host-guest isolation,
as the host is able to alter a guest container’s process state
through commands such as kill.

IV. ACCESS CONTROL AND SYSTEM CALL TABLE

The proposed approach features the use of three main
built-in OS mechanisms, namely Mandatory Access Control
(MAC), AppArmor, and the system call table.

A. Mandatory Access Control (MAC)

Using the Bell-LaPadula (BLP) access control model [13]
a MAC-based access control solution typically consists of
three components, namely reference monitor, enforcement
hooks and access control policies.

1) Reference monitor: The reference monitor is a security
module which is responsible monitoring all resource access
requests [15]. It uses the access enforcement hooks to
intercept any resource access request and grants access based
on a set of pre-defined access policies [16].

2) Access enforcement hooks: Placed at critical points
within the kernel, access enforcement hooks are invoked
when a user or a process makes a resource access request.
They intercept any resource access requests and pass them
to the reference monitor.

3) Access control policies (ACM): Defined by the se-
curity administrator, access control policies are a set of
rules which determine the resources which a user is allowed
access to.

B. AppArmor

AppArmor is a Mandatory Access Control (MAC) so-
lution designed to provide fined-grained resource access
control.

AppArmor follows a file path-based approach (as opposed
to the label-based approach as used in SELinux) in defining
access control policies for processes. An AppArmor profile
contains the directory paths which a given process can access
as well as the operations (i.e., read, write, execute, etc) that
can be done within them.

C. System call table

Exported during the kernel compilation process, it is a
kernel data structure which contains pointers to the various
system call functions which are scattered across different
locations in the kernel space.

When a process requires the execution of a system call
from the kernel, it places the system call number in the EAX
register (RAX register) and places the required system call
parameters onto the subsequent registers (i.e., EBX, ECX,
etc). It then triggers the SYSENTER instruction against the
host CPU, resulting its moving into the more privileged
Ring-0 and triggering the trap handler. The handler places
the system call arguments on to the kernel stack, before
looking up the system call table using the value in the EAX
register to determine the system call to be triggered. The
system call function is then triggered by passing the values
in the kernel stack to the function.

D. Limitations of existing access control techniques

While the existing techniques are effective in controlling
guest resource access in a virtualization environment, they
are limited in a number of ways.

One of the limitations is that the existing access control
measures are designed with the assumption that the guest
VM is the source of attack. However, they are limited
in detecting malicious access from the host. Given that
containers run on the host user space, an attacker can
compromise the host through a software vulnerability and
in turn manipulate the container state.

In addition, the existing solutions typically leverage the
access control mechanisms which are built into the hy-
pervisor. Virtualization platforms such as KVM and Xen
use sVirt and XSM (Xen Security Modules) respectively
to enable the system administrator to define access control
policies using SELinux (Security-enhanced Linux) providing
a bidirectional access control between the host and the
guest VM. While containers use sandboxing tools such
SECCOMP (Secure Computing mode) to control the system
calls which guest containers can issue, it does not provide
the same functionality. This allows a malicious host to
gain illegal guest resource access using the aforementioned
vulnerabilities.

V. DESIGN AND IMPLEMENTATION
A. System Architecture

Since the ultimate goal of container virtualization is to
provide highly efficient virtualization with low overhead,
we have considered the following design guidelines in the
design of our proposed approach:

o 71 - Efficiency: The system should not incur too much
overhead to impact the efficiency of the system and
container.

o r2 - Transparency: Both host and container should not
be aware of the existence of the system.

e 73 - Scalability: The system should be able to scale
when the number of container increases.

e 74 - Deployability: The system should be readily de-
ployable in a production environment with minimal
effort.

Host
Admin

Deny Issues
response system call

Guest
container

User space

Kernel space

Security

sys_open context lookup

sys_kill

Deny response

PROTECT

‘ Host operating system

Figure 1: PROTECT Architecture

The implementation of our proposed approach as a kernel
module on the host provides a single point of control to mon-
itor host attempts to access guest containers while ensuring
minimal performance overhead, satisfying r1 (efficiency) as
well as r3 (scalability).

Moreover, having a kernel-based container access control
ensures a solution that does not require changes to the Linux
Containers (LXC) source code, hence being completely
transparent to the containers (r2).

Our idea is similar to but distinctively different from
the hypercall interception approach used in hypervisor-
based virtualization security solutions [17][18]. One of the
drawbacks of hypercall interception is that it requires the
hypervisor source code to be recompiled for every hypercall
modification which is infeasible in a multi-host virtualization
environment. By implementing our proposed approach as a
Loadable Kernel Module (LKM), we can easily deploy it
without code modification (r4).

B. Implementation

Our proposed approach is composed of four components
which are namely the system call interceptor, file path veri-
fication, target process verification, and AppArmor security
context verification as shown in Figure 1.

1) System call interceptor: The system call interceptor is
responsible for monitoring any attempts by the host to open
files as well as to terminate a running process are monitored,
by intercepting the sys_open and sys_ki11 system calls
respectively.

In order to intercept the sys_open and sys_kill
system calls, the system call table sys_call table
entries containing the addresses of their respective functions
are first located. Their original addresses in the structure are
then replaced with the system call functions of our proposed
approach.

2) File path verification: To determine if an opened
file belongs to a guest container, the sys_open system

call is intercepted and the opened filepath is extracted
from it. For example, when a user opens a file proc/
111/root/home/ubuntu/helloworld. txt, the un-
derlying libc library triggers the sys_open sys-
tem call by passing the function arguments as fol-
lows: sys_open ("proc/111/root/home/ubuntu/
helloworld.txt", O_RDONLY). The first two sec-
tions (i.e., proc and 111) are extracted from the function
argument, before being concatenated to read the process’s
current file containing the AppArmor security context of
the process. The host is denied access to the target file if it
belongs to a guest container process.

3) Target PID verification: To prevent the host from
altering the state of running guest container processes, our
proposed approach monitors the host’s attempts to trigger
the sys_kill system call for process termination. For
instance when the user issues the command ki1l -9 111,
the command arguments are passed to the sys_kill as
such: sys_kill (111, -9). Once triggered, the target
process ID (i.e., 111) is extracted and is used to determine
its AppArmor security context by reading the current file
as previously indicated.

4) AppArmor security context verification: Operating on
the principle of least privilege, AppArmor restricts pro-
cesses’ access to the host files and directories using security
profiles. The defined security profiles contain “path entries”
[19] specifying the directories which the processes are
allowed access to, along with their access rights to them. For
instance a process such as 1s is allowed access to the host
system directories having been assigned the unconfined
security context, but a guest container is restricted from do-
ing so by being assigned the 1xc_container_default
security context. Based on this observation, our proposed
approach denies denying host access to guest container’s
resources if the AppArmor security context input from the
previous two components is 1xc_container_default.

5) Access control: If any malicious events are detected
using the aforementioned approach, our proposed approach
denies access to the guest container file as well as its ability
to alter its running process state by issuing the EPERM error.

VI. EXPERIMENTAL EVALUATION
A. Experiment Setup

We have evaluated our implementation on a server with
an Intel Xeon quadcore processor at 2.33 GHz along with
8GBs of memory, with Linux kernel version 3.18.18 (64-
bit). The LXC (Linux Containers) platform was installed on
the server node, with an Ubuntu guest container running on
top of it.

B. Evaluation Results

1) Measuring sys_open execution time: To conduct
this experiment, we first created an Ubuntu guest container
on the host, with nano running in it. We then created a

200
I

150
I

Execution Time (us)
°

100
I
a

50

T T
w/o PROTECT w/ PROTECT

Figure 2: Comparison of execution time on sys_open

small user space C program which uses the sys_open
system call to open the helloworld.txt file located on
the guest. We executed the program 100 times, each time
opening the file 10 times both with the proposed approach
running as well as without it. The time taken for both cases
is shown in the boxplot in Figure 2.

As expected, the amount of time taken to open the targeted
container file is on average higher when our approach is
running with the host kernel. The median execution time
with the presence and absence of it are 45.4 microseconds
and 54.1 microseconds respectively, indicating an additional
execution time of 8.7 microseconds on average. The increase
in time is due to the context-switching performed by the
proposed approach between the kernel and user spaces to
access the container file’s AppArmor profile.

On the other hand, we can also observe that there are
eight outliers in the proposed approach’s execution time. We
believe that these sudden spikes in execution time are down
to the effect of soft interrupts from other system operations
and is more profound due to kernel-user space context-
switching. However, given that we have only observed eight
outliers out of a thousand points, we argue that these spikes
will only happen rarely and will not bring a noticeable side
effect to the system.

2) Measuring sys_kill execution time: In order to
measure the execution time taken by the sys_kill system
call, we developed another small user space C program
which kills a running process using the kill function
given its process id (PID). During the experiment, we used
the program to terminate the nano process running in an
Ubuntu guest container. The program was run 100 times
both in the presence of the proposed approach as well as
in its absence, and the execution times for both are shown
accordingly in the boxplots in Figure 3.

At first glance, we can notice that there is a significant
increase in execution time when the proposed approach is

o

50
L

40
L
o o o o

Execution Time (us)
20
|

10
L

T T
w/o PROTECT w/ PROTECT

Figure 3: Comparison of execution time on sys_kill

running within the host. More specifically, the median execu-
tion times are 8.4 microseconds and 27.8 microseconds with
and without it respectively, representing an increase of 19.4
microseconds, or 230%. Similar to the case in monitoring
sys_open, the overhead increase is due to our proposed
approach having to perform context switching between the
user space and kernel space in order to determine the
target PID’s security context before granting host access.
Since the sys_kill’s routing is extremely simple and
fast, the additional time for context switching becomes more
profound.

Despite this, we note that sys_kill is often only
activated on user demand meaning that the performance
overhead associated with monitoring it will not affect the
overall system performance as it is too small to be noticeable
by users.

VII. RELATED WORK

There are a few previous studies that have examined the
performance of containers in various scenarios. [20] put
VServer, OpenVZ, and LXC as well as Xen in a HPC
(High Performance Computing) environment and found that
that all container-based systems demonstrate a near-native
performance of CPU, memory, disk and network. However,
all types of containers tested have shown poorer isolation as
compared with Xen.

While [20][7][6] all reported reduced levels of isolation
by containers as compared with hypervisors, and hence are
more vulnerable to malicious events, little has been done to
address this issue. Both [11] and [12] reported the incidents
in which malicious containers can gain root privilege due to
imperfect process isolation. The current industry solution
has been to mainly leverage the existing techniques we
presented in Section IV[21][22]. However such techniques
only provide better isolation between containers and do
not efficiently prevent a compromised host from performing

malicious actions on the containers as we demonstrated in
Section III. Our proposed approach addresses this type of
vulnerability by intercepting and analysing malicious system
calls in the kernel space.

VIII. CONCLUSION

While significant effort has been expanded in isolating
hosts and containers, i.e., preventing containers’ process
gaining access to the host, limited work has been done
preventing users who have access to a physical host gaining
direct access into containers. In this paper, we presented two
flawed namespace vulnerabilities and demonstrated that they
can be easily exploited to gain direct access to containers’
internal running processes.

In order to fully protect containers from malicious host
activities, we presented a new access control solution which
features the use of system call interception while leveraging
the existing AppArmor MAC solution.

We have also extensively evaluated our approach under
different scenarios. Our experimental results have revealed
it was able to regulate illegal host access to guest containers
while incurring negligible performance overhead.

ACKNOWLEDGMENT

The second author would like to acknowledge the support
provided to him by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) grants EP/P004407/1 and
EP/P004024/1.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica
et al., “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage
in third-party compute clouds,” in Proceedings of the 16th
ACM conference on Computer and communications security.
ACM, 2009, pp. 199-212.

3

—

P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking up is hard to do:
security and functionality in a commodity hypervisor,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. ACM, 2011, pp. 189-202.

[4] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. C. Skalsky, “Hypersentry: enabling stealthy in-context
measurement of hypervisor integrity,” in Proceedings of the
17th ACM conference on Computer and communications
security. ACM, 2010, pp. 38-49.

[5 Available:

—

“Linux containers.” [Online].
linuxcontainers.org/lxc/introduction/

https://

[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An
updated performance comparison of virtual machines and
linux containers,” technology, vol. 28, p. 32, 2014.

[7]1 S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and
L. Peterson, “Container-based operating system virtualization:
a scalable, high-performance alternative to hypervisors,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3.
ACM, 2007, pp. 275-287.

[8] R. Rosen, “Linux containers and the future cloud,” Linux J,
vol. 240, 2014.

[9] C. Babcock, “Docker: Less controversy, more container
adoption in 2015, 2015. [Online]. Available:
http://www.informationweek.com/cloud/platform-as-a-
service/docker-less-controversy-more-container-adoption-in-
2015/d/d-id/1318771

[10] G. Calarco and M. Casoni, “On the effectiveness of linux
containers for network virtualization,” Simulation Modelling
Practice and Theory, vol. 31, pp. 169-185, 2013.

[11] N. Sapple, “Linux local privilege escalation via suid
/proc/pid/mem write,” 2012. [Online]. Available: http:
//blog.zx2c4.com/749

[12] S. Krahmer, “shocker: docker poc vmm-container breakout,”
2014. [Online]. Available: http://stealth.openwall.net/xSports/
shocker.c

[13] D. E. Bell and L. J. LaPadula, “Secure computer systems:
Mathematical foundations,” DTIC Document, Tech. Rep.,
1973.

[14] R. S. Sandhu and P. Samarati, “Access control: principle and
practice,” Communications Magazine, IEEE, vol. 32, no. 9,
pp. 4048, 1994.

[15] J. P. Anderson, “Computer security technology planning
study. volume 2,” DTIC Document, Tech. Rep., 1972.

[16] U. Erlingsson, “The inlined reference monitor approach to
security policy enforcement,” Cornell University, Tech. Rep.,
2003.

[17] C.Li, A. Raghunathan, and N. Jha, “A trusted virtual machine
in an untrusted management environment,” Services Comput-
ing, IEEE Transactions on, vol. 5, no. 4, pp. 472-483, Fourth
2012.

[18] C. H. H. Le, “Protecting xen hypercalls: Intrusion detec-
tion/prevention in a virtualization environment,” 2009.

[19] M. Bauer, “Paranoid penguin: an introduction to novell ap-
parmor,” Linux Journal, vol. 2006, no. 148, p. 13, 2006.

[20] M. Xavier, M. Neves, F. Rossi, T. Ferreto, T. Lange, and
C. De Rose, “Performance evaluation of container-based vir-
tualization for high performance computing environments,” in
Parallel, Distributed and Network-Based Processing (PDP),
2013 21st Euromicro International Conference on, Feb 2013,
pp. 233-240.

[21] “Docker security,” 2015. [Online]. Available: https://docs.
docker.com/articles/security/

[22] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan,
“Security of os-level virtualization technologies,” in Secure
IT Systems. Springer, 2014, pp. 77-93.

