
A Survey on Stateful Data Plane in Software Defined
Networks

Xiaoquan Zhanga, Lin Cuia,∗, Kaimin Weia, Fung Po Tsob, Yangyang Jia,
Weijia Jiac

aDepartment of Computer Science, Jinan University, Guangzhou, China
bDepartment of Computer Science, Loughborough University, LE11 3TU, UK

cState Key Laboratory of Internet of Things for Smart City, FST, University of Macau,
Macau SAR, China

Abstract

Software Defined Networking (SDN), which decouples control plane and data

plane, normally stores states on controllers to provide flexible programmability

and convenient management. However, recent studies have shown that such

configuration may cause frequent and unnecessary interactions between data

plane and controllers in some cases. For example, a DDoS detection installed on

a controller needs to fetch information from data plane periodically, introducing

additional network delay and controller overhead. Thus, stateful data plane is

proposed to offload states and operation logics from controller to data plane.

Stateful data plane allows switches to perform some operations independently,

accelerating packets processing while reducing overhead on both controllers and

networks. However, stateful data plane increases the complexity of network

devices and imposes many new challenges to the management and schedule

of SDN enabled networks. This paper conducts a comprehensive survey on

the latest research works and provides insights into stateful data plane. Both

stateful data plane platforms and compilers are extensively summarized and

analyzed, as well as explicit design of applications based on them. Afterwards,

we dwell on the fundamental technologies and research challenges, including

implementation considerations of stateful data plane. Finally, we conclude this

∗Corresponding author
Email address: tcuilin@jnu.edu.cn (Lin Cui)

Preprint submitted to Computer Networks September 14, 2021

survey paper with some future works and discuss open research issues.

Keywords: SDN, stateful data plane, data plane programmability, P4,

OpenState

1. Introduction

Software Defined Networking (SDN) is an emerging network architecture

that provides unprecedented network programmability by decoupling the con-

trol plane and data plane. OpenFlow [1], the first real implementation of the

SDN paradigm, introduces a “match-action” paradigm to the SDN data plane5

wherein forwarding is simple but efficient. SDN controller, the control plane,

can obtain global information of the whole network. This provides a conve-

nient means for operators to adapt to the network dynamism and to extend

new features by redefining control loops on the control plane. Clearly, in legacy

SDN architecture, the controller manages network states while the data plane10

is only responsible for forwarding packets, which is also known as stateless data

plane [2].

With an increasing adoption, it is soon realized that frequent interactions

between data plane and control plane bring additional delay and overhead to the

network (e.g., the overhead of periodic queries of counters produced by a DDoS15

detection [3]). On the other hand, experiments show that, even if preserving

some network states and performing some simple operations, the data plane can

still guarantee high-speed packet forwarding [4]. Thus, functions that require

frequent interactions between controllers and data plane for state management

can be offloaded to data plane to reduce overhead and increase efficiency. This20

novel architecture is called stateful data plane.

In contrast to the simple “match-action” paradigm of OpenFlow, stateful

data plane proposes a new “match-state-action” paradigm that can both keep

and manage states in the data plane [5]. It imposes higher requirements on

network devices, such as requiring complex hardware design to support stateful25

operations (e.g., stateful elements are required in process pipelines [6]). Thus,

2

network switches are no longer “dumb” but more “intelligent”. Then, network

applications can be deployed in stateful data plane and executed without explicit

involvement of controllers [7]. For example, by eliminating delay to controllers,

network monitoring implemented on stateful data plane can obtain better accu-30

racy and efficiency [8]. However, managing states in data plane is hard because

it is distributed [9]. Each switch keeps its own states, which may be quite dis-

tinct from others, then state inconsistency problems may arise. On the other

hand, comparing with controller, it is difficult to realize too complex logic in

data plane due to limitations of network devices (e.g., difficult to implement35

multiplication/division while promising per-packet process speed [10]). Hence,

stateful data plane also faces some challenges. For example:

1. Capabilities of network devices limit the implementation of complex state-

ful applications [11]. For example, applications only obtain limited re-

sources of switches (e.g., memory).40

2. A common interface for stateful data plane is still missing, making it a

great challenge when implementing and deploying stateful application. For

example, methods to locate state positions are varied in different hardware

implementations [12].

3. Switch hardware structural design still have some issues when implement-45

ing stateful data plane, for example, race condition problem in pipeline

process [6].

In fact, stateful data plane has received increasing attentions from research

community. Shaghaghi et al. [13] analyzed three main types of vulnerabili-

ties in stateful data plane, namely: unbounded flow state memory allocation,50

lack of authentication mechanisms and a central state management. They also

gave some basic recommendations to cope with vulnerabilities of stateful data

plane, including state consistency check and secure in-band signaling. Dargahi

et al. [14] proposed schemes for stateful data plane and analyzed the vulnerabili-

ties of existing stateful data plane proposals for security issues. They concluded55

that the possible vulnerabilities should be carefully taken into consideration

3

in designs of current and future proposals for stateful data planes. Bifulco et

al. [15] proposed a simple state classification, including packet state and global

state, to define the data plane as stateful or stateless according to whether the

global state is admitted to write. They also argued that finding an expressive60

yet simple model to handle state operations in the data plane is important.

Kaljic et al. [16] pointed out that the future research direction of stateful data

plane is the development of fully synchronized stateful data plane supporting

state monitoring and management.

In this paper, we present a more comprehensive survey on stateful data plane,65

ranging from fundamental techniques of stateful data plane to existing platforms

and applications. The comparison with other works is shown in Table 2. The

taxonomy of stateful data plane discussed in this paper is shown in Figure 1.

The main contributions of this paper are as follows:

1. An extensive review of schemes on stateful data plane, and summary70

emerging stateful applications classified by distinct state machine.

2. An explicit definition of stateful data plane, and detailed exploration of

basic components of stateful data plane to show flexibility and programma-

bility.

3. A comprehensive analysis of schedule and optimization technologies and75

implementation considerations for stateful data plane, as well as future

research directions of stateful data plane.

The remainder of this paper is organized as follows: Section 2 briefly pro-

vides an overview of stateless and stateful data plane. Section 3 lists existing

platforms and applications and summarizes their features. Section 4 introduces80

basic components of stateful data plane. Section 5 summarizes schedule and op-

timization technologies and section 6 discusses implementation considerations

for stateful data plane. Finally, Section 7 summarizes several issues for future

research directions on stateful data plane and Section 8 concludes this paper.

4

Figure 1: Condensed overview of this survey on stateful data plane in SDN

5

Table 1: Main acronyms

SDN Software Defined Networking

DDoS Distributed Denial of Service

TCAM Ternary Content Addressable Memory

BRAM Block Random Access Memory

SRAM Static Random Access Memory

FPGA Field Programmable Gate Array

FSM Finite State Machine

EFSM Extended Finite State Machine

DAG Directed Acyclic Graph

BMV2 Behavior Model v2

ALU Arithmetic and Logic Unit

NAT Network Address Translation

INT In-band Network Telemetry

DSL Domain Specific Language

ASIC Application Specific Integrated Circuit

DPDK Data Plane Development Kit

RDMA Remote Direct Memory Access

NIC Network Interface Card

6

T
a
b

le
2
:

C
o
m

p
a
ri

so
n

w
it

h
o
th

er
su

rv
ey

p
a
p

er
s

W
or

k
s

P
u

b
li

sh
ed

ye
ar

M
a
in

fo
cu

s
C

o
n
te

n
t

o
f

sc
h

em
es

a
n

d
a
p

p
li

ca
ti

o
n

s

C
o
n
te

n
t

o
f

fu
n

d
a
m

en
ta

l

te
ch

n
o
lo

g
ie

s
a
n

a
ly

si
s

C
o
n
te

n
t

o
f

h
a
rd

w
a
re

li
m

it
a
ti

o
n

s

D
ar

ga
h

et
al

.
[1

4]
20

17
S

ec
u

ri
ty

o
f

S
D

N

st
a
te

fu
l

d
a
ta

p
la

n
e

In
tr

o
d

u
ci

n
g

se
ve

ra
l

ty
p

ic
a
l

sc
h

em
es

a
n

d
a
p

p
li

ca
ti

o
n

s
#

#

S
h

ag
h

ag
h

i
et

al
.

[1
3]

20
18

S
ec

u
ri

ty
o
f

S
D

N

d
a
ta

p
la

n
e

S
im

p
ly

in
tr

o
d

u
ce

fe
w

sc
h

em
es

.
N

o
a
p

p
li

ca
ti

o
n

s
#

#

B
if

u
lc

o
et

al
.

[1
5]

20
18

P
ro

g
ra

m
m

a
b

le

D
a
ta

P
la

n
e

S
im

p
ly

li
st

sc
h

em
es

.

N
o

a
p

p
li

ca
ti

o
n

s
S

ta
te

m
a
n

a
g
em

en
t

#

K
al

ji
c

et
al

.
[1

6]
20

19
P

ro
g
ra

m
m

a
b

il
it

y

in
S

D
N

d
a
ta

p
la

n
e

S
im

p
ly

in
tr

o
d

u
ce

fe
w

sc
h

em
es

.
N

o
a
p

p
li

ca
ti

o
n

s
S

ta
te

m
a
n

a
g
em

en
t

#

O
u

r
w

o
rk

C
o
m

p
re

h
en

si
ve

su
rv

ey
o
f

S
D

N
st

a
te

fu
l

d
a
ta

p
la

n
e

E
la

b
o
ra

ti
n

g
sc

h
em

es

a
n

d
a
p

p
li

ca
ti

o
n

s
C

o
m

p
re

h
en

si
ve

a
n

a
ly

si
s

!

7

2. Overview of Stateless and Stateful Data Plane85

In this section, we briefly outline the concepts of stateless data plane and

stateful data plane, followed by a load balancer example to show their differ-

ences. Several commonly used acronyms in this paper are listed in Table 1.

2.1. Stateless Data Plane

The most prominent feature of traditional SDN is that the network control90

and states (i.e., the control plane) are centralized on one or more controllers

for flexible network management. Switches send any required information to

controller via PACKET IN messages. Upon receiving those messages, controller

updates network states. Such updates may trigger actions such as modifying or

installing new rules to the flow tables in switches. In comparison, data plane95

in switches only carries out simple “match-action” operations according to flow

table without conducting any state management. This is referred as stateless

data plane.

The development of traditional SDN [17][18][19][20] is becoming increasingly

more mature as evidenced by many proposed and developed SDN frameworks100

such as NOX [21], POX [22], OpenDayLight [23], Floodlight [24] and Bea-

con [25]. The original OpenFlow versions adopt a simple and efficient “match-

action” abstraction in data plane. This abstraction uses fixed match fields and

corresponding actions to effectively forward packets. Network devices of state-

less data plane are usually “dumb” devices.105

However, stateless data plane, albeit simple and fast, can inevitably suffer

from additional network delay and overhead, specially for applications that re-

quire frequent read/write on states, e.g., heavy hitter [26], where it needs to

stop and wait for decisions from the controller. There are some attempts to

fix this problem. For example, Han et al. [27] proposed a method that allows110

switches to indirectly participate in the management of states without storing

states directly. To avoid the controller being a bottleneck, an open connection

table is designed to manage states information interaction between controller

8

and data plane. However, due to inevitable network delay, controller may still

fail to update states in time, making decisions based on the out-of-date states.115

2.2. Stateful Data Plane

Unlike stateless data plane, stateful data plane allows network switches to

directly operate their own states with few or no intervention of controller. In

this paradigm, a controller offloads two main components to data plane: state

management and processing logic. With this, some network functions can be120

partially or even fully implemented in data plane. In addition, to correctly model

these network functions, state machines (see details in Section 4) are introduced

for analysis in stateful data plane. Hence, we define three key characteristics of

stateful data plane:

1. States can be stored in data plane. This reduces data transmitted125

to controllers over the network. These states are meaningful for functions

deployed on switches. For example, switches in HULA [28] save state

information that indicates the next best hop for every entering flow.

2. Data plane can update its own saved states. For example, increasing

a counter value when a given condition happens during packet processing.130

Thus, the decision-making policy of switches can be changed accordingly,

which will affect the processing of subsequent received packets. This fea-

ture requires switches to offer certain capability of various state operations.

3. Data plane is programmable. Data plane has limited programmability

and is able to change operation logics when needed.135

It is worth noting that there exist some works that only keep states on

switches without providing state operations on the data plane. Such architec-

tures are not classified as stateful data plane in this paper. For example, Nife et

al. [29] provided the flow state-aware using tables to keep track of each specific

flow. However, it only allows the controller to maintain states rather than the140

switch itself.

9

(a) Stateless

(b) Stateful

Figure 2: Load balancer in stateless and stateful data plane

10

2.3. Stateless vs Stateful

Table 3 compares main features and properties of both stateless and stateful

data plane. In addition to differences mentioned above, stateful data plane is

distinct from stateless data plane in some aspects. The controller can provide145

global decide-making optimization to network. However, applications installing

in stateless data plane requires the controller frequent involvement, which is un-

desirable since controller’s design is not involved real-time packet processing but

is supposed to generate rules. Moreover, overhead and latency of communica-

tion between switch and controller increases with the increase of the number of150

switches in stateless data plane, since more requests the controller needs to han-

dle. Conversely, offloading simple logic in stateful data plane, the controller can

preserve resources for more essential operations. Hence, due to logic handling

in data plane, the controller would not be effected by the number of switches.

Besides completely installing in data plane, applications in stateful data155

plane also have an alternative option, which is installing in the controller and

switches. Netcache [30] proposed a a novel key-value store architecture for cloud

services. In netcache, simple logic is installed in data plane to improve packet

forwarding and processing performance, and the controller is responsible for

updating cache in switches. The combination of the controller and data plane160

allows programmers to explore various and even more meaningful applications.

To show their differences clearly, Figure 2(a) and Figure 2(b) illustrate imple-

mentation of a load balancer with stateless and stateful data plane respectively.

For the stateless implementation in Figure 2(a), when a new connection arrives,

the switch will send request to controller (step 2). The controller will make de-165

cision according to states it maintains and install new rules in the switch (step

3 and 4). Finally, the switch forwards packets to the assigned server (step 6).

Unlike stateless implementation, the processing of stateful data plane is per-

formed without involvement of the controller, as shown in Figure 2(b). Upon

receiving a new connection, the switch (load balancer) records information ex-170

tracted from the packet header and assigns a server based on pre-defined logics,

e.g., polling algorithm (step 2). Then, it updates its local states (step 3) and

11

forwards packets to the assigned server (step 4).

In deed, the legacy SDN architecture brings sufficient computing resources

on the centralized controller for network management, and simple but effective175

abstraction on stateless data plane for rapid forwarding. However, the lack of

independence causes that the data plane needs to communicate with controller

frequently, which leads to overhead and potential bottleneck in the controller.

By offloading state operations and logics to the data plane, stateful data plane

greatly reduces response time and communication overhead between controller180

and data plane. For example, a port knocking application (Figure 8) in the data

plane can enormously avoid the network latency between controller and data

plane [31].

Stateful data plane also has some limitations. For example,

1. Some operations can not be easily implemented in stateful data185

plane. One typical example is applications that require modifying packet

payload, e.g., intrusion detection application that needs to analyze infor-

mation in payload [32].

2. Complicated state recovery mechanism. States stored on switches

need to be restored when the switch fails. However, in order to ensure con-190

sistency and efficiency, existing state synchronisation/migration methods

have to make tradeoff between complexity of mechanisms and the time

interval of recovery [12][33].

3. Complicated application design. Since stateful data planes have more

severe memory and computing constraints than stateless data planes, pro-195

grammers sometimes need to consider these hardware limits and made

some tradeoff on performance when designing applications on stateful data

plane [10].

3. Existing Platforms and Applications for Stateful Data Plane

In this section, we survey various existing platforms and compilers for state-200

ful data plane, as well as several representative applications based on stateful

12

T
a
b

le
3
:

S
ta

te
le

ss
D

a
ta

P
la

n
e

a
n

d
S

ta
te

fu
l

D
a
ta

P
la

n
e

D
e
sc

ri
p

ti
o
n

S
ta

te
le

ss
d

a
ta

p
la

n
e

S
ta

te
fu

l
d

a
ta

p
la

n
e

S
ta

te
st

or
ag

e
an

d

m
an

ag
em

en
t

C
en

tr
a
ll

y
st

o
re

d
a
n

d
m

a
n

a
g
ed

b
y

th
e

co
n
tr

o
ll

er
E

a
ch

sw
it

ch
st

o
re

s
a
n

d
m

a
n

a
g
es

it
s

ow
n

st
a
te

s

S
w

it
ch

-C
on

tr
ol

le
r

co
m

m
u

n
ic

at
io

n
F

re
q
u

en
t

a
n

d
es

se
n
ti

a
l

S
ta

te
fu

l
u

p
d

a
te

s
d

o
n

o
t

re
q
u

ir
ed

to
b

e
tr

ig
g
er

ed
b
y

co
n
tr

o
ll

er

N
et

w
or

k
d

ev
ic

es
“D

u
m

b
”

[3
1
],

co
n
tr

o
ll

er
ta

k
es

ov
er

lo
g
ic

“
S

m
a
rt

”
,

sw
it

ch
es

ca
n

im
p

le
m

en
t

ce
rt

a
in

lo
g
ic

o
p

er
a
ti

o
n

C
om

p
u

ti
n

g
p

ow
er

C
on

tr
ol

le
r

p
ro

v
id

es
g
lo

b
a
l

d
ec

is
io

n
-m

a
k
in

g
o
p

ti
m

iz
a
ti

o
n

an
d

co
m

p
le

x
m

a
th

em
a
ti

ca
l

co
m

p
u

ta
ti

o
n

.

C
o
n
tr

o
ll

er
ca

n
o
ff

er
ex

te
rn

a
l

co
m

p
u

ta
ti

o
n

fo
r

sw
it

ch
es

w
h

ic
h

o
n

ly
su

p
p

o
rt

si
m

p
le

m
a
th

em
a
ti

ca
l

o
p

er
a
ti

o
n

s

a
n

d
b

it
w

is
e

o
p

er
a
ti

o
n

s
[2

6
]

E
ff

ec
t

of
th

e

n
u

m
b

er
of

sw
it

ch
es

M
or

e
sw

it
ch

es
m

ea
n

s
m

o
re

ov
er

h
ea

d
fo

r
co

n
tr

o
ll

er
.

T
h

e
n
u
m

b
er

o
f

sw
it

ch
es

d
o
es

n
o
t

a
ff

ec
t

th
e

ov
er

h
ea

d

o
f

th
e

co
n
tr

o
ll

er
[1

4
]

A
p

p
li

ca
ti

on
d

iv
er

si
ty

S
u

p
p

o
rt

va
ri

o
u

s
a
p

p
li

ca
ti

o
n

s
in

co
n
tr

o
ll

er
C

o
m

b
in

in
g

co
n
tr

o
ll

er
a
n

d
sw

it
ch

m
a
ke

s

m
o
re

m
ea

n
in

g
fu

l
a
p

p
li

ca
ti

o
n

[3
4
]

A
p

p
li

ca
ti

on
p

la
ce

m
en

t
O

n
ly

in
co

n
tr

o
ll

er
M

a
in

ly
in

sw
it

ch
es

(c
o
n
tr

o
ll

er
m

ig
h
t

b
e

in
v
o
lv

ed
)

13

Figure 3: Tables used in OpenState, OPP, FAST, SDPA and FlowBlaze architectures. Each

table is represented as a rectangle containing the table name and corresponding table columns

enclosed by smaller rounded rectangles. Dotted lines represent state transitions.

data plane.

3.1. Stateful Data Plane Platforms

Table 4 compares existing platforms of stateful data plane from six aspects:

state machine implementation, implementing software switch, implementing205

hardware, hardware storage, global state in registers and controller involvement.

3.1.1. OpenState

OpenState [31] extends OpenFlow to configure stateful data plane, and has

been implemented as an OpenFlow 1.3 experimenter extension. OpenState pro-210

14

T
a
b

le
4
:

S
u

m
m

a
ry

o
f

S
ta

te
fu

l
D

a
ta

P
la

n
e

P
la

tf
o
rm

P
la

tf
o
rm

S
ta

te
m

a
ch

in
e

im
p

le
m

e
n
ta

ti
o
n

Im
p

le
m

e
n
ti

n
g

so
ft

w
a
re

sw
it

ch

Im
p

le
m

e
n
ti

n
g

h
a
rd

w
a
re

H
a
rd

w
a
re

st
o
ra

g
e

G
lo

b
a
l

st
a
te

in
re

g
is

te
rs

C
o
n
tr

o
ll

e
r

in
v
o
lv

e
m

e
n
t

T
h

ro
u

g
h

p
u

t

O
p

en
S

ta
te

E
F

S
M

ta
b

le
O

p
en

S
ta

te

so
ft

sw
it

ch
[3

6
]

F
P

G
A

-b
a
se

d

[3
7
][

3
8
]

T
C

A
M

R
A

M
#

In
it

ia
ti

o
n

&
au

x
il

ia
ry

st
a
te

u
p

d
a
te

U
n

k
n

ow
n

O
P

P
E

F
S

M
ta

b
le

C
P

q
D

O
F

1
.3

sw
it

ch
[3

9
]

N
et

F
P

G
A

S
U

M
E

[4
0
]

T
C

A
M

R
A

M

R
eg

is
te

r

!
In

it
ia

ti
o
n

&
au

x
il

ia
ry

st
a
te

u
p

d
a
te

1
0
˜
8
0
M

p
p

s

F
A

S
T

E
F

S
M

ta
b

le
O

p
en

v
S

w
it

ch
[4

1
]

N
/
A

T
C

A
M

S
R

A
M

#
S

u
p

p
le

m
en

ta
ry

co
m

p
u

ta
ti

o
n

a
n

d
st

o
ra

g
e

U
n

k
n

ow
n

S
D

P
A

F
P

[5
]

O
p

en
v
S

w
it

ch
[4

1
]

O
N

et
C

a
rd

[4
2
]

T
C

A
M

R
A

M
#

F
P

in
it

ia
li

za
ti

o
n

[5
]

0
.5

˜
1
0
G

b
p

s

S
N

A
P

x
F

D
D

[4
3]

N
et

A
S

M
’s

su
p

p
o
rt

ed

sw
it

ch
[4

4
]

N
/
A

C
A

M

R
eg

is
te

r
#

S
ta

te
s

p
la

ce
m

en
t

U
n

k
n

ow
n

F
lo

w
B

la
ze

E
F

S
M

ta
b

le
m

S
w

it
ch

[4
5
]

eB
P

F
/
X

D
P

[4
6
]

N
et

F
P

G
A

S
U

M
E

[4
0
]

B
R

A
M

T
C

A
M

R
eg

is
te

r

!
In

it
ia

ti
o
n

&
au

x
il

ia
ry

st
a
te

u
p

d
a
te

1
4
.8

M
p

p
s

B
an

za
i

M
at

ch
-a

ct
io

n

ta
b

le
N

/
A

S
p

ec
ifi

c

h
a
rd

w
a
re

[1
1
]

T
C

A
M

S
R

A
M

#
#

U
n

k
n

ow
n

B
en

za
i

is
co

m
p

il
ed

w
it

h
D

O
M

IN
O

in
tr

o
d

u
ce

d
in

S
ec

ti
o
n

3
.2

.2

15

T
a
b

le
5
:

S
u

m
m

a
ry

o
f

S
ta

te
fu

l
D

a
ta

P
la

n
e

C
o
m

p
il

er

C
o
m

p
il

e
r

L
a
n

g
u

a
g
e

ty
p

e
S

ta
te

m
a
ch

in
e

im
p

le
m

e
n
ta

ti
o
n

Im
p

le
m

e
n
ti

n
g

so
ft

w
a
re

sw
it

ch
Im

p
le

m
e
n
ti

n
g

h
a
rd

w
a
re

S
ta

te
fu

l
m

e
m

o
ri

e
s

A
to

m
ic

o
p

e
ra

ti
o
n

P
4

D
om

ai
n

-s
p

ec
ifi

c

la
n

gu
ag

e
D

A
G

B
M

V
2

[4
7
]

P
IS

C
E

S
[4

8
]

R
M

T
[4

9
]

d
R

M
T

[5
0
]

P
4
F

P
G

A
[5

1
]

P
4
->

F
P

G
A

[5
2
]

R
eg

is
te

r
[5

3
]

#

D
O

M
IN

O
C

-l
ik

e
im

p
er

at
iv

e

la
n

gu
ag

e
D

A
G

B
a
n

za
i

[1
1
]

N
/
A

A
to

m
[1

1
]

!

X
L

D
om

ai
n

-s
p

ec
ifi

c

la
n

gu
ag

e
E

F
S

M
D

P
D

K
F

lo
w

B
la

ze
R

eg
is

te
r

#

D
A

G
:

D
ir

ec
te

d
A

cy
cl

ic
G

ra
p

h

16

vides the ability to configure custom states inside switches and program how

states should be evolved. OpenState relies on a simplified EFSM abstraction

(Extended Finite State Machines), named Mealy Machine [35]. The EFSM is

modeled as a 4-tuple (S, I,O, T), plus a default state S0. S refers a finite set

of states. I is a finite set of input symbols (events). O is a finite set of output215

symbols (actions). T : S × I → S × O is a transition function which maps

< state, event > pairs into < state, action > pairs. OpenState simply provides

programmers with different header fields to access to the state table: “lookup-

scope” is used to access a state table for lookup operations, and “update-scope”

is used to update the state table. The state table stores states of flows iden-220

tified by a unique key composed of a subset of the information stored in the

packet header (e.g., an IP address, a source/destination MAC pair, a 5-tuple

flow identifier). EFSM table is used to implement state machines, which deter-

mines match keys and actions. Packets would trigger corresponding actions and

state modifications after going through the EFSM table.225

OpenState is one of early proposals for stateful data plane. It proposes prim-

itives for switches to handle flow states and provides high programmability for

users to express their network requirements [54]. However, since OpenState only

provides a simple model that supports limited actions, it lacks expressiveness

and can only abstract limited state machine [55].230

3.1.2. OPP

OPP (Open Packet Processor) [4] proposes a programming abstraction which

retains the platform independent features of the original “match-action” ab-

straction while bringing programmability of stateful packet processing tasks into

network switches. The stateful process of OPP consists of four stages. In stage235

1, a Flow Identification Key (FK) is extracted from packets and it identifies the

entity to which a state may be assigned. The key is used to extract flow context

including a state label s and an array of registers R = {r0, r1, ..., rk−1}. In stage

2, Condition Block is in charge of implementing the enabling functions specified

by the EFSM abstraction according to compute conditions. Global registers240

17

are delivered to this block as an array G = {G0, G1, . . . , Gh} of global variables

and/or global switch states. The output of the condition block is a Boolean

vector C = {c0, c1, . . . , cm−1}. In stage 3, EFSM Table describes the transition

of a state machine. After matching in this table, output has three types: setting

next state, executing actions, and updating registers. In state 4, Update Logic245

Block implements an array of Arithmetic and Logic Units (ALUs), which allows

programmers to update the value of the registers (array R or array G).

OPP is an improvement of OpenState, providing more explicit executing

actions and adding registers to expand programmability. In addition, OPP en-

riches EFSM formal notation, which permits programmers to implement more250

meaningful applications. However, some limitations of OPP architecture ex-

ist [4]. Firstly, OPP does not support some asynchronous events that trigger

translation of states, e.g., timer’s expiration. Secondly, OPP only deploys the

ALU processing in the Update Logic Block for a cleaner abstraction and a sim-

pler implementation, which means that it only supports simple calculations.255

Bianchi et al. [4] also discussed the hardware feasibility and devised a specific

hardware for OPP architecture based on FPGA prototype.

3.1.3. FAST

FAST (Flow-level State Transitions) [26] is a new switch abstraction that

allows operators to program their state machines for a variety of applications260

in data plane. FAST includes two key designs: control plane and data plane.

The control plane compiles state machines for specified switch using high-level

abstraction, and data plane is responsible for forwarding packets according to

the state machines compiled by control plane. In the data plane, the implemen-

tation of state machines mainly bases on four tables: State table, State machine265

filter, State transition table and Action table. The State machine filter is used

to filter different types of traffic. The State table stores the current state for

each flow. It is worth pointing out that FAST decouples State transition table

and Action table from the EFSM table, which offers more flexible programma-

bility. The State transition table submits a received packet to Action table270

18

based on matched conditions. The Action table will execute specified actions,

and the State table will update corresponding states based on the “next state”

in state transition table (see Figure 3). In FAST, controller is used to miti-

gate limitations of data plane. Due to insufficient computational complexity in

data plane, FAST allows switches to upload unsupported computations (e.g.,275

average) without guaranteeing the time interval of interaction with controller.

In addition, controller can save states that are rarely used, which decreases

memory consumption on switches.

3.1.4. SNAP

SNAP (Stateful Network-Wide Abstractions) [9] offers a high-level language280

that provides a simple “centralized” stateful programming model to achieve

a stateful network-wide abstraction. In SNAP, a subset of switches is chosen

for array placement, and other switches can still play a role in routing flows

through state variables. By accessing and modifying the state stored in corre-

sponding switches, a broad range of applications from firewall to fine-grained285

traffic monitoring can be implemented. Two key details in SNAP program

are state placement and traffic routing. To support stateful packet processing,

SNAP uses intermediate representation which is called extended forwarding de-

cision diagram (xFDD) [43]. The SNAP program will be converted to xFDD,

which determines state variables and processing operations for each packet be-290

fore forwarding the packet to corresponding output port. In order to enforce

state placement and traffic routing, the compiler uses a mixed-integer linear

program (MILP) to decide state placement and routing.

In SNAP program, states storage is not distributed on each switch, but cen-

tralized on one switch. The main reason is that it is hard to simultaneously295

provide strong consistency when updating state variables. Although this cen-

tralized storage method saves a lot of storage spaces and reduces the complexity

of network, it lacks reliability. Especially, when the switch storing states fails,

these states are unrecoverable.

19

3.1.5. SDPA300

SDPA (Stateful Data Plane Architecture) [5] is a platform that enables ef-

fective programming and stateful processing in data plane. SDPA proposes

a “match-state-action” paradigm for the data plane. More specifically, a co-

processing unit in switches named Forwarding Processor (FP) is designed to

manage states. The FP includes three tables: state table (ST), state transla-305

tion table (STT) and action table (AT). ST is used to store states. Applications

deployed on controller can send messages to FP for dynamically initializing ST

if stateful processing is needed. STT is designed to support stateful processing,

which is configured by controller only once during initialization. STT contains

three domains: state, event and next state. The state domain matches current310

states; the event domain makes a comparison with packet’s flag or states to

trigger state transition; and the next state domain can be a specified state or

mathematical/logical operations (e.g., state + 1). AT is used to record actions

for incoming packets under different flows and it may transit the corresponding

state in the ST.315

SDPA proposes a more complicated but effective architecture for stateful

processing. It supports processing of different applications by preserving and

separating state information of different applications, which facilitates the re-

quirement of isolation between different applications for programmers. States

on an overloaded switch can be migrated with SDPA. Two types of migrations320

are considered in SDPA: (1) migration from one switch to another, (2) migra-

tion from controller to the switches, since SDPA allows applications to initiate

in state table.

3.1.6. FlowBlaze

FlowBlaze [6] is an abstraction for designing stateful packet processing func-325

tions implemented on NetFPGA SmartNIC [40]. It achieves high performance

and low latency while consumes very few power on newer FPGA models. In

FlowBlaze, an Extended Finite State Machine (EFSM) [56] is introduced to

build functions specified by users. The FlowBlaze machine model consists of

20

stateless element and stateful element. Stateless element is the same as a330

“match-action” table. And stateful element is split into Flow Context Table,

EFSM table and update function. The Flow Context Table is used to save states

of flows. The EFSM table is used to implement functions abstracted by EFSM.

And the update function is responsible for executing the state update. Besides,

a small stash memory [6] is used to handle hash collision when too much entries335

inserting into hash table, which provides scalability for the Flow Context Table.

FlowBlaze solves the race condition problem by a simple scheduler scheme to

guarantee the consistency of flow states.

FlowBlaze is a novel abstraction and mature stateful data plane platform

implemented on hardware. It has been used to provide better performance to340

network functions in some projects, e.g., VPP functions [57]. It also discusses

and solves several typical problems in stateful data plane, e.g., consistency and

large amounts of flows. Although some issues are not resolved completely, Flow-

Blaze offers many inspirations for future designs of stateful data plane platform.

3.2. Stateful Data Plane Compilers345

In this section, we list some existing compilers for stateful data plane. Table 5

compares existing compilers, from six aspects: language type, state machine im-

plementation, implementing software switch, implementing hardware, stateful

memories and atomic operation.

3.2.1. P4350

P4 [58] is a high-level language for programming protocol-independent packet

processors, which enables flexible reconfigurability in the field. In P4, program-

mers can not only devise header fields, but also define the packet parsing and

processing in the fields. The processing of packets in P4 has four major phases:

(1) Parsing of packet, a packet must be translated into a representation that355

can be processed in the next phase when it enters switch. In the meanwhile, the

parser recognizes fields from header and extracts them for processing in the next

stage but does not distinguish what protocol it is. (2) Apply the “match-action”

21

table to ingress, the “match-action” table is divided into ingress and egress, both

may modify packet headers. Ingress “match+action” may determine the egress360

port. Based on ingress processing, the packet may be forwarded, replicated,

dropped, etc. (3) Apply the “match-action” table to the egress, which performs

per-instance modifications to the packet headers, e.g., for multicast copies. (4)

Deparsing, packets undergo decomposition as well as processing. After pro-

cessing, the packet should be deparsed based on its current states before final365

forwarding.

Exploiting stateful applications in P4 is convenient. First, they are no longer

limited by the fixed match fields (e.g., OpenFlow 1.3.4 supports 40 matching

fields) as P4 enables flexible definition of headers. Second, P4 allows program-

mers to use metadata to transmit states in different stages, which provides370

great convenience for delivering state. Third, P4 version 1.1 [53] introduces a

special stateful memory called registers. Registers can be defined as a global

state accessed by multiple flows, and they can also be used to implement small

dictionaries, or a hash table as sparse dictionaries.

3.2.2. DOMINO375

DOMINO [11] is a data plane programming language which aims to achieve

line-rate programmability for stateful algorithms. In order to simplify some

sophisticated data plane algorithms, DOMINO introduces a new packet tran-

sition: a sequential packet-processing code block. A code block is atomic and

isolated from other code blocks. It means that a packet only needs to consider its380

own processing without interference from the processing of other packets. Thus,

DOMINO guarantees that packet process runs at line rate. DOMINO also in-

troduces a machine model, named Banzai, for programmable line-rate switch.

There are two constrains in the Banzai model: (1) different packet-processing

units can not share states; (2) any switch state modification is required to be385

visible to the next packet entering the switch. These two constrains ensure

that code block is atomic. Thus, atom is introduced for storing and modifying

states. It is a vector of processing unit used to handle stateful packet processing

22

in Banzai, and each pipeline stage contains a vector of atom.

DOMINO guarantees state consistency and performance at the cost of lim-390

ited flexibility. The atomic operation is unable to conduct tasks that can

not complete within the limited time budget of a single pipeline’s stage [59].

DOMINO tries to explore a once-and-for-all way to cater to vendors’ closed plat-

form while provides an open programmable architecture, which compromises its

flexibility [60].395

3.2.3. XL

XL (XFSM Language) [61] is developed for the description of per-flow state-

ful network functions. It is suitable for FlowBlaze [6] to describe stateful and

stateless network functions in the EFSM table. Since many platforms can ex-

ecute network functions abstracted as EFSM, XL becomes a general compiler400

using EFSM abstraction, providing platform independent portable code. Fur-

thermore, XL provides a compiler xlc to compile user’s code into a JSON rep-

resentation, which can be loaded into hardware or software (e.g., DPDK).

Compared with P4 and DOMINO using DAG as their abstractions, XL

enriches the EFSM abstraction programming for hardware platforms that relies405

on the EFSM table, while it can also support programming in software. On the

other hand, XL also provides a convenient way to compose multiple network

functions for reducing the complexity of application design.

3.3. Applications Based on Stateful Data Plane

In this section, five explicit applications are introduced to show the pro-410

grammability of stateful data plane. Due to page limitations, more other appli-

cations can be found in Table 6.

3.3.1. SPIDER

SPIDER [2] implements a link failure recovery that offers programmable

detection and link reroute. It designs a packet processing pipeline implemented415

on OpenState. By sending probe packets to adjacent switches, SPIDER provides

a recovery mechanism that has short delay of recovery and failure detection.

23

Figure 4: A failover example [2]. Packets attaching to tag=0 are forwarded along blue-solid

lines to the original path, otherwise, packets attaching to tag=F4 are forwarded along red-

dotted lines to the detour path.

24

T
a
b

le
6
:

S
u

m
m

a
ry

o
f

S
ta

te
fu

l
D

a
ta

P
la

n
e

A
p
p

li
ca

ti
o
n

s
a
n

d
S

ta
te

M
a
ch

in
es

A
p

p
li

c
a
ti

o
n

T
y
p

e
S

ta
te

fu
l

d
a
ta

p
la

n
e

so
lu

ti
o
n

S
ta

te
tr

a
n

si
ti

o
n

R
e
f.

L
in

k
fa

il
ov

er
F

S
M

S
w

it
ch

es
sa

ve
b

a
ck

u
p

p
a
th

a
n

d
m

o
n

it
o
r

li
n

k
’s

st
a
tu

s

S
w

it
ch

es
w

o
u

ld
n

o
ti

ce
th

a
t

it
s

a
d

ja
ce

n
t

sw
it

ch
is

d
ow

n
a
n

d
th

e
d

er
o
u

te
p

a
th

is

a
ct

iv
a
te

d

[2
][

6
2
][

6
3
]

L
oa

d
b

al
an

ci
n

g
F

S
M

S
w

it
ch

es
sh

a
re

n
et

w
o
rk

tr
a
ffi

c
w

it
h

m
u

lt
ip

le

li
n

k
s

B
y

p
o
ll

in
g
,

o
r

b
y

th
e

li
n

k
in

fo
rm

a
ti

o
n

a
tt

a
ch

ed
b
y

re
ce

iv
ed

p
a
ck

et
s

[2
8
][

6
4
][

6
5
]

N
A

T
F

S
M

K
ee

p
a

st
a
te

m
a
ch

in
e

in
th

e
N

A
T

sw
it

ch
fo

r

ev
er

y
fl

ow

A
ll

o
ca

te
in

te
rn

a
l

a
d

d
re

ss
es

in
tu

rn
w

h
en

re
ce

iv
in

g
th

e
fi

rs
t

p
a
ck

et
o
f

a
n

ew
fl

ow
[7

]

S
ta

te
fu

l
fi

re
w

al
ls

F
S

M
S

w
it

ch
fi

lt
er

s
u

n
so

li
ci

te
d

in
b

o
u

n
d

T
C

P

co
n

n
ec

ti
o
n

s
w

it
h

o
u

t
a
n
y

o
u

tb
o
a
rd

fl
ow

D
et

er
m

in
e

th
e

le
g
a
li

ty
o
f

so
u

rc
e

a
n

d

d
es

ti
n

a
ti

o
n

a
d

d
re

ss
es

,
o
th

er
w

is
e

d
is

ca
rd

[9
][

6
6
]

P
or

t
k
n

o
ck

in
g

F
S

M

S
w

it
ch

es
m

a
in

ta
in

a
st

a
te

m
a
ch

in
e

fo
r

ev
er

y

fl
ow

d
et

er
m

in
in

g
w

h
et

h
er

it
ca

n
o
b

ta
in

th
e

p
er

m
it

D
et

er
m

in
e

if
th

is
co

n
n

ec
ti

o
n

ca
n

p
a
ss

a
se

ri
es

o
f

sp
ec

ifi
c

p
o
rt

s
in

o
rd

er
,

o
th

er
w

is
e

d
is

ca
rd

.
[4

][
5
4
]

D
N

S
d

et
ec

ti
on

E
F

S
M

A
ss

ig
n

a
co

u
n
te

r
to

ke
ep

tr
a
ck

o
f

a
ll

th
e

re
so

lv
ed

IP
a
d

d
re

ss
es

fo
r

cl
ie

n
ts

T
h

e
cl

ie
n
t

is
ju

d
g
ed

to
b

e
a

m
a
li

ci
o
u

s
u

se
r

if

it
s

a
cc

es
se

s
ex

ce
ed

th
e

th
re

sh
o
ld

[5
]

D
D

oS
d

et
ec

ti
on

E
F

S
M

S
w

it
ch

es
co

u
n
t

th
e

fe
a
tu

re
s

o
f

th
e

b
a
ck

g
ro

u
n

d

tr
a
ffi

c
to

d
et

ec
t

p
o
te

n
ti

a
l

a
tt

a
ck

s

If
th

e
co

u
n
te

r
ex

ce
ed

s
th

e
th

re
sh

o
ld

,
it

w
o
u

ld

b
e

si
g
n

ed
a
s

a
a
tt

a
ck

er

[2
6
][

6
7
][

6
8
]

[6
9
][

7
0
][

7
1
]

S
u

p
er

-s
p

re
ad

er
d

et
ec

ti
on

E
F

S
M

D
et

ec
t

fl
ow

s
fr

o
m

o
n

e
so

u
rc

e
w

it
h

T
C

P

co
n

n
ec

ti
o
n

ex
ce

ed
in

g
th

re
sh

o
ld

[7
2
]

C
a
lc

u
la

te
co

u
n
te

rs
o
f

co
n

n
ec

ti
o
n

n
u

m
b

er
o
f

a

so
u

rc
e

a
n

d
se

n
d

to
co

n
tr

o
ll
er

if
it

ex
ce

ed
s

th
re

sh
o
ld

[5
][

9
][

2
6
]

F
lo

w
si

ze
co

u
n
te

r
E

F
S

M
R

ep
o
rt

to
th

e
co

n
tr

o
ll

er
a
ft

er
th

e
co

m
p

le
ti

o
n

o
f

co
ll

ec
ti

n
g

th
e

si
ze

o
f

fl
ow

in
d
a
ta

p
la

n
e

K
ee

p
a

co
u

n
te

r
o
f

fl
ow

si
ze

a
n
d

se
n

d
to

th
e

co
n
tr

o
ll

er
u

p
o
n

re
ce

iv
ed

F
IN

si
g
n
a
l

[2
6
][

7
3
][

7
4
]

S
Y

N
-fl

o
o
d

d
et

ec
ti

on
E

F
S

M
S

w
it

ch
es

m
a
in

ta
in

a
co

u
n
te

r
fo

r
ev

er
y

fl
ow

to

d
et

ec
t

S
Y

N
-F

lo
o
d

C
o
m

p
a
re

th
e

co
u

n
te

r
o
f

S
Y

N
p

a
ck

et
s

sa
ve

d

in
d

a
ta

p
la

n
e

w
it

h
th

e
th

re
sh

o
ld

[5
]

H
ea

v
y
-h

it
te

r

d
et

ec
ti

on
E

F
S

M
S

av
e

a
co

u
n
te

r
fo

r
ev

er
y

fl
ow

T
h

e
sw

it
ch

u
p

lo
a
d

s
ev

er
y

co
u

n
te

r
to

co
n
tr

o
ll

er
o
n
ce

th
e

co
u

n
te

r
ex

ce
ed

s
th

e

th
re

sh
o
ld

[7
5
][

7
6
][

7
7
]

25

However, it should consider the trade-off between overhead and probe packet

frequency. SPIDER proposes two kinds of failover: local failover and remote

failover. When a switch perceives that its neighbor is unreachable, this is a local420

failover. Remote failover refers that a switch receives a packet that indicates a

failover happening at remote switches other than neighbours, and the packet is

sent from the node with local failover (shown in Figure 4). Moreover, SPIDER

sends heartbeat packets to monitor whether adjacent nodes are alive.

SPIDER devises four different tables on OpenState. The table 0 and table 1425

perform stateless forwarding (e.g., legacy OpenFlow), while table 2 and table 3

implement remote failure finite state machine (RF FSM) and local failure finite

state machine (LF FSM) respectively. More specifically, when remote failure

happens in the network, the table 2 is responsible for the transition of state

(from normal to Fi), and reroutes packets to backup path. The state transition430

can also be triggered upon receiving a bounce packet, which is sent back across

its original path until it arrive the switch 2, shown by the red dotted line in

Figure 4. The table 3 mainly processes heartbeat packets to detect if adjacent

nodes enable communication and implements the FSM with two macro states:

UP and DOWN. Initially, all neighbors are in state UP and need heartbeat.435

When the first packet is matched in this table, the state will be updated to

UP: heartbeat request, which indicates that packets will be normally forwarded

to primary path and the switch is waiting for heartbeat packet. Otherwise, if

a heartbeat reply is time-out, the state will be updated to DOWN: need probe.

Under such state, packets would be forwarded to detour and the switch will440

persistently send the probe to monitor status of links.

Solving failover problems in stateless data plane mainly rely on the reaction

of the controller. Links may not be recovered in time and packet loss happens

when the latency between switches and the controller rises. SPIDER utilizes

the collaboration between different switches to rapidly recover network while445

considerably mitigates packet loss.

26

3.3.2. Static NAT

Bonola et al. [7] implemented a static NAT based on OPP platform. The

static NAT keeps track of states for TCP connections in round-robin fashion

for assigning TCP connections to a set of web servers in a private LAN. The450

core of this design is to track two states: global state and per-flow state. More

specifically, static NAT requires two stateful tables (table 0 and table 1) and one

stateless table (table 2). The table 0 mainly enforces initialization of a new flow

upon receiving its first packet. When submitting to the next table, the value of

the global variable G0 is used as the metadata labeled in the packet. Once the455

flow is bound to its assigned server through its first packet, subsequent packets

will be forwarded to the same server. The table 1 is used to translate destination

address from external address to one of internal server’s addresses. The table

2 processes stateless forwarding on reverse direction. A concise description of

creating a new flow is that the first packet of the new flow entering table 0,460

which will be labeled as a metadata with the value of G0 for enforcing server

assignment decision. Then it will be submitted to the next table for assignment

based on the last bit of packet’s metadata.

Some network functions repeat simple logic to every flow (e.g., port knock-

ing), which can be completely implemented in data plane to avoid the commu-465

nication overhead between the controller and switches.

3.3.3. HULA

HULA [28] is a scalable load balance scheme written in P4. HULA adopts

ECMP (Equal Cost Multipath) strategy, and performs the distance vector al-

gorithm in switches. HULA uses the distribution of network link utilization470

information to obtain the best next hop and uses probe packets to advertise

its own link status. Moreover, the information stored in switch gives the best

next hop towards any destination instead of calculating the whole path for every

flow.

Two key phases in HULA are processing probe packets and flowlet forward-475

ing. (1) The HULA probe packet, which carries the value of maximum link

27

utilization, is forwarded to all paths for updating information on the switch.

(2) Flowlet forwarding, which prevents packet reorder, uses a hash table to save

information: the last time a packet was seen for the flowlet, and the best hop

assigned to that flowlet. To achieve these phases, HULA devises a new header,480

a metadata for probe packets, and several register arrays. The hula header

consists of two fields: dst tor and path util. The dst tor represents the destina-

tion of the packet, and the path util represents the path utilization of previous

switches. The nxt hop in metadata devised for a normal packet represents the

best next hop of this packet, which would be modified after the process of485

pipeline. Besides, in order to support stateful operations in data plane, five

state variables (registers) are defined: min path util, best hop, update time,

flowlet hop, and flowlet time. (1) Both flowlet time and update time record

the last time at which states are changed. For example, when a packet arrives,

it needs to update the time of the flowlet in which the packet is located. (2)490

flowlet hop variable records the next hop of packet to avoid packet reordering.

(3) best hop tracks the best next hop, and can be changed if the value of the

min path util is updated. (4) min path util stores the information of utiliza-

tion on the best path, which is updated by the maximum value comparing with

the specified state stored in header fields of the incoming probe packet.495

Implemented with P4 in stateful data plane, HULA beats previous load

balanced algorithms implemented in custom silicon on a switching chip (e.g.,

CONGA [78]), which have a long hardware design periods and can not be mod-

ified once implemented.

3.3.4. HashPipe500

Sivaraman et al. [75] proposed a heavy-hitter detection algorithm, HashPipe,

implemented based on P4. The HashPipe tracks the k-heaviest flows with high

accuracy by maintaining both flow keys and counts of heavy flows in data plane

(shown in Figure 5). HashPipe manages multiple stages to store heavy flows’

information by dividing the switch process per packet into the first stage and505

next stages. When a packet arriving in the first stage, its counter is updated if

28

Figure 5: HashPipe [75] consists of several stages. In stage 1, a new flow (e.g., flow with

key L) will initiate a new item and replace an existing item with the minimum value (e.g.,

item with key K). Afterwards, the replaced item will be evicted to the next stage and same

operations will conducted. Lastly, an item would be deleted from the three stages. HashPipe

may generate duplications since different stages may save same flows (e.g., item with key L

simultaneously exists in stage1 and stage3).

its key matches a hit. If it fails to match, it would be initiated when there are

available slots. Otherwise, it will replace the originated key. At the same time,

the metadata in the packet would carry the originated key’s information to the

next stage. In all downstream stages, if the packet matches successfully and the510

corresponding counter in the matched table item is bigger, it would replace the

item as in the first stage, otherwise it is directly forwarded to the next stage.

Through this “smoke out” method to transfer heavy keys, HashPipe implements

simple heavy-hitter detection under the condition of limited available memory.

However, HashPipe may produce duplication in different stages (shown in Fig. 5)515

due to its “smoke out” method (as shown in Figure 5).

Previous works need to consider the tradeoff of reasonable accuracy and

acceptable overhead when monitoring heavy flow (e.g, netflow [79]). The pro-

grammability of P4 enables HashPipe to implement the heavy hitter in each

switch with few memory consumption and high accuracy.520

29

3.3.5. Dapper

Dapper [8] is a TCP diagnosis that monitors TCP performance accurately

in real time at network edge. Once Dapper identifies network bottleneck, its

specialized tools can find out what causes the bottleneck and offer a solution.

Moreover, Dapper monitors traffic close to the server, which provides accuracy525

for measurement without monitoring client directly. There are two types of

core metrics required to infer network problems, including easy to infer (e.g.,

counting number of bytes) and hard to infer (e.g., congestion). Dapper devises a

packet process to obtain these metrics, which is first hashed to either initialize a

new flow or check the statistics storing current information. To reduce the data-530

plane state requirements, Dapper adopts a two-phase monitoring technique. The

first phase monitors all connections continuously but only collects low-overhead

metrics (e.g., average rate of the flow). When a flow needs to be diagnosed due

to poor performance, the second phase will be initialized to investigate it with

more states (e.g., flow statistics).535

Dapper utilizes flexible packet processing to obtain a fine-grained metrics for

diagnosis in data plane. The challenge is the diagnosis needed to be lightweight

in order to run across a wide range of devices with limited capabilities.

3.3.6. INT

In-band Network Telemetry (INT) is a new method of transmitting network540

measurement that enables packets to query switch-internal states (e.g., link

utilization, queuing latency) to achieve fine-grained real-time monitoring [34].

The basic idea is that data plane allows probe packets attached its internal

states to traverse whole network. In the last position of INT path, operators

or controller can obtain all information of data planes by extracting the probe545

packets. INT requires the support of data plane for internal state exposure.

Figure 6 shows an example of INT execution. The probe packet is sent

from the INT generator to the INT collector after goes through several INT for-

warders. The probe packet attaches INT metadata information in each arriving

node and finally is extracted by the controller for network analysis. Researches550

30

Figure 6: An example of INT execution [80].

have proved that it does work well in addressing some network problems [81].

However, due to the diversity of network deployment and the overhead brought

by probe packet headers, the challenge of INT is how to optimize the problem

of probing paths [80].

INT is a novel application that benefits from stateful data plane. Network555

operators can easily define what switch-internal states they need and design how

to process probe packet for reduce of latency and overhead via flexible packet

processing. This technology has drawn academic attention in recent years [82].

3.4. Remarks

Many platforms have implemented dozens of stateful applications in their560

architecture [6][9]. From the typical application in stateful data platform, e.g.,

port knocking, to today’s variety of applications, they not only just leverage

the property of stateful data plane to avoid unnecessary involvement of the

controller, but also utilize the programmability and flexibility of stateful data

plane to exploit fine-grained and meaningful designs.565

31

4. Basic Components of Stateful Data Plane

To exploit the flexibility and programmability of stateful data plane, this

section describes necessary definitions and designs, focusing on three aspects:

state classification, state machine and state operation. Understanding the rela-

tion and distinct functions of different states can help researchers exploit their570

applications and improve their stateful processing architecture [83].

4.1. State Classification

As the carrier of network information, state is the key component of stateful

data plane. According to its effective scope, in this paper, states are divided

into three types: per-packet state, per-flow state and global state.575

4.1.1. Per-packet State

Per-packet state, which is maintained by each packet, is essential for deliv-

ering state information within each switch or across the network. States for

different packets may be different.

On the one hand, when states are transferred as metadata within a switch,580

they can greatly facilitate the exchange of state information in different stages,

e.g., the key-value tuple evicted from the previous stage can be carried in meta-

data of a packet traversing to the next stage [75].

On the other hand, when states are stored in packet’s header, they can be

transmitted outside a switch, allowing different switches to exchange informa-585

tion. First, a switch can change its optimization strategy by extracting packet’s

information. For example, in HULA [28], switches obtain the information of

path utilization from received packet sent by the previous switch and such in-

formation is used to determine the next optimal router. Second, the switch can

announce network information through these states proactively. For example, in590

SPIDER [2], switch announces the location of a link failure to others by sending

a special packet attaching pre-defined states.

32

4.1.2. Per-flow State

A flow is identified by a unique key (e.g., IP addresses, source/destination

MAC pair or 5-tuple flow identifier) in many platforms [31]. Per-flow state can595

be used to track status of each flow in a switch. Such state can be used and

updated when processing packets of corresponding flow. For example, in the

application of port knocking, shown in Figure 8, a flow would be marked as

the “open” state by a switch after verifying a series of packets in the correct

sequence in the switch. Besides, per-flow states reside inside switches, usually600

implemented in memory or registers [6].

On the other hand, the states can also be used to update other flows’ states.

For example, in MAC learning, traffic from a bidirectional flow has two key

based on our flow definition. Therefore, the application requires cross-state

update [31].605

4.1.3. Global State

Global state is a special type of state with various definitions in different

platforms or hardware architectures implementation [4][44]. Here, we define

that global state can be accessed and updated by multiple flows. For example,

a global state G0 is used to count the number of received flows [7]. Global state610

is essential in many network applications. For example, a global state can be

used to save the port utilization for load balance [7].

On the other hand, many flows show the same behavior in network [84]. A

state machine can be used in different flows. Assuming that programmers intend

to record the overall information for all flows described by a state machine, it615

would be difficult to obtain states for only portion of these flows through extend-

ing the state machine. For example, programmers require to obtain the total

number of flows transferred in the state 2 (shown in Figure 8). To address this

issue, FlowBlaze [6] proposes a new notion of global state, which is implemented

in registers and can be read/modified by all the state machine instances (each620

flow associates with a state machine instance) originated from the same state

machine definition. The previous problems can be easily addressed by using

33

global state: programmers can only specify a global state to update it when a

flow enters the state 2.

4.1.4. Discussions625

Table 7 shows the differences among all three types of states above. The main

difference between per-packet state and two other states is that per-packet state

locates on packets. And we distinguish the per-flow state from the global state

by whether the states can be accessed and modified by multiple flows.

In addition to classifications of state above, other classification methods also630

exist for different objectives and applications. For example, considering whether

states need to be migrated, they can be divided into soft state and hard state.

Soft state can be recovered through each packet easily, while careful migration

needs to be considered for hard state since it requires to be copied from other

switches [12]. Bifulco et al. [15] classified state information to two categories:635

packet state and global state. The packet state is associated with a single packet

and the global state is associated with the device while it persists across packets.

Pontarelli et al. [6] proposed a distinct notion of global state, which can be read

and modified by all flows generated from the same EFSM definition.

4.2. State Machines640

Stateful applications can be abstracted as state machines. Hence, how to

correctly design a proper state machine is essential in stateful data plane.

4.2.1. State Machine Abstraction

Network functions, i.e., applications, deployed on stateful data plane have

different logics. To correctly abstract logics of stateful network functions, Finite645

State Machine abstraction is usually used [85][86]. OpenState adopts Mealy

Machine [35] as its state machine abstraction. In short, a transition in state

machine refers to changing from one state to another certain state, which can

be described as T : S × I → S × O (introduced in Section 3). For example,

in a port knocking shown in Figure 8 (see details in Section 4.1.2), nodes are650

states and edges represent transitions. Transitions are marked with the tuple

34

State 1 State 2

{Counter>1000,
Counter=Counter+1,

Forwarding}

{Counter<=1000,
Counter=Counter+1,

Forwarding}

{*,
Counter=Counter+1,

Drop}

Figure 7: State machine of a flow counter [6]. Packets of a flow will be dropped after receiving

more than 1000 packets from the same flow.

35

T
a
b

le
7
:

T
h

re
e

T
y
p

es
o
f

S
ta

te

T
y
p

e
L

o
c
a
ti

o
n

U
sa

g
e

E
x
a
m

p
le

s

P
er

-p
ac

k
et

st
at

e
M

et
ad

at
a

H
ea

d
er

(1
)

F
a
ci

li
ta

te
th

e
ex

ch
a
n

g
e

o
f

st
a
te

in
fo

rm
a
ti

o
n

in
d

iff
er

en
t

st
a
g
es

(2
)

E
x
ch

a
n
g
e

in
fo

rm
a
ti

o
n

b
et

w
ee

n
sw

it
ch

es

(1
)

S
ta

g
es

in
p

ip
el

in
e

tr
a
n

sf
er

in
fo

rm
a
ti

o
n

b
y

sa
v
in

g
ke

y
-v

a
lu

e

p
a
ir

s
in

m
et

a
d

a
ta

o
f

p
a
ck

et
s

[7
5
]

(2
)

N
o
ti

ce
th

e
p

a
th

u
ti

li
za

ti
o
n

fo
r

th
e

n
ex

t
sw

it
ch

b
y

p
a
ck

et
s

[2
8
]

(3
)

A
n

n
o
u

n
ce

n
et

w
o
rk

th
e

lo
ca

ti
o
n

s
o
f

fa
il

ov
er

b
y

sp
re

a
d

in
g

sp
ec

ia
l

p
a
ck

et
s

[2
]

P
er

-fl
ow

st
at

e

R
eg

is
te

r

R
A

M

/S
R

A
M

/B
R

A
M

(1
)

T
ra

ck
st

a
tu

s
o
f

th
e

st
a
te

m
a
ch

in
e

o
f

a
fl

ow

(2
)

F
lo

w
co

u
n
te

r

(3
)

T
ra

ck
so

m
e

el
a
b

o
ra

te
fl

ow
in

fo
rm

a
ti

o
n

(4
)

T
em

p
o
ra

ry
va

ri
a
b

le
s

p
er

fl
ow

(1
)

R
ep

re
se

n
t

th
e

ce
rt

a
in

st
a
tu

s
o
f

st
a
te

m
a
ch

in
e

in
p

o
rt

k
n

o
ck

in
g

[3
1
]

(2
)

A
co

u
n
te

r
ca

n
b

e
u

se
d

in
va

ri
o
u

s
a
p

p
li

ca
ti

o
n

s,
e.

g
.,

h
ea

v
y

h
it

te
r

[7
5
],

D
D

o
S

d
et

ec
ti

o
n

[6
7
],

S
Y

N
-fl

o
o
d

d
et

ec
ti

o
n

[5
]

(3
)

S
av

e
th

e
ti

m
es

ta
m

p
o
f

th
e

la
st

re
ce

iv
ed

p
a
ck

et
(H

U
L

A
[2

8
])

(4
)

T
h

e
ke

y
o
f

h
a
sh

a
lg

o
ri

th
m

to
id

en
ti

fy
ea

ch
fl

ow
[7

5
]

(5
)

S
av

e
fe

a
tu

re
s

o
f

fl
ow

s
fo

r
m

a
ch

in
e

le
a
rn

in
g

p
re

d
ic

ti
o
n

[8
7
].

(6
)

T
em

p
o
ra

ry
va

ri
a
b

le
s

fo
r

S
av

in
g

fl
ow

co
m

p
u

ti
n

g
re

su
lt

s
[8

7
]

G
lo

b
al

st
at

e
R

eg
is

te
r

(1
)

P
o
rt

st
a
tu

s

(2
)

G
lo

b
a
l

co
u

n
te

r

(3
)

G
lo

b
a
l

te
m

p
o
ra

ry
va

ri
a
b

le
s

(1
)

S
av

e
th

e
u

ti
li

za
ti

o
n

o
f

p
o
rt

[7
]

(2
)

C
o
u

n
t

th
e

n
u

m
b

er
o
f

a
ll

fl
ow

s
(S

ta
ti

c
N

A
T

[7
])

(3
)

sa
ve

m
a
ch

in
e

le
a
rn

in
g

m
o
d

el
s

p
re

d
ic

ti
n

g
fo

r
fl

ow
s

[8
7
]

36

consisting of the condition and an action. In this port knocking, when a switch

receives the packet of a flow that satisfies the corresponding condition under its

current state, it enters the next state and the switch drops these probe packets.

Until the state is “Open”, the switch would forward those packets with port=22.655

Although Mealy Machine is suitable for transforming the stateless “match-

action” table into stateful process [88], some network functions are still not sup-

ported since per-packet processing interval in them may be too long to affect

processing latency. Another problem is that Mealy Machine needs to explicitly

define all the possible states, which may lead to state explosion [6]. Hence, re-660

searchers consider better abstraction to simplify the design of network functions’

state machine. Flowblaze [6] resorted to Extended Finite State Machines (EF-

SMs) [56], and OPP [4] adopted eXtended Finite State Machines (XFSM) [35].

1 They extended the Mealy Machine model by introducing: (1) variables D to

describe the state; (2) a set of enabling functions F (fi : D → 0, 1, fi ∈ F) to665

trigger transitions; (3) a set of update functions U(ui : D → D, ui ∈ U). Thus,

the transition is expressed as T : S × F × I → S × U ×O.

The improved extended finite state machine improves enabling functions for

triggering transitions, which enables programmers to exploit more meaningful

stateful applications. Afterward, the state transition is no longer just “match”670

next state, but can also determine the next state based on “conditions”. For ex-

ample, a flow counter is shown in Figure 7. The condition of triggering transition

from state 1 to state 2 is that the counter of a flow is more than 1000. Besides,

the improvement will also augment the complexity in hardware implementation

(e.g., condition blocks) [4].675

4.2.2. State Machine Classification

Most of stateful network applications can be abstracted into state machines,

which can be classified into two types: finite state machine and extended

1EFSM and XFSM are the same abstraction and simply use different acronyms, and we

use EFSM in this paper

37

finite state machine.

A state machine may perform the whole process of network functions from680

initialization to extinction, in which every phase is explicitly defined. Such state

machines are referred as finite state machines. Finite state machines may need

to work with some specific protocol states (e.g., TCP three-way handshake),

or can be abstracted into certain network functions (e.g., link failover and port

knocking). For example, in the port knocking shown in Figure 8 (see details in685

Section 4.1.2), the initialization of a new flow would be marked “default”. After

the flow going through three state transitions, it would become the final state

“open”. This indicates that the port is open and the whole process of a finite

state machine is completed.

On the contrary, some applications are defined as an extended finite state690

machine whose core logic requires data variables to model counters. Specifi-

cally, these applications monitor the value of counters and execute pre-defined

operations when these counters exceed pre-defined thresholds.

An extended finite state machine is used to abstract a network monitoring

that needs to consistently supervise network traffic (e.g., heavy hitter detection,695

DDoS detection and flow size monitoring). Compared to traditional stateless

data plane architecture that controller needs to periodically query statistics from

switches, stateful data plane with this state machine can significantly reduce

bandwidth consumption and controller overhead [5].

Table 6 summarizes details of network applications that are implemented700

based on these two types of state machines.

4.2.3. Remarks

Basically, the relations between flows and state machines can be one-to-one,

many-to-one and one-to-many. Considering limited memory space, e.g., TCAM

(Ternary Content Addressable Memory), a state machine usually can be shared705

among many flows [6]. A flow can also connect to two or more state machines

simultaneously, which is very common in today’s network requirements (e.g., a

MAC learning and firewall in a switch). And the problem for network operator is

38

Figure 8: State machine of port knocking [31]

how to let the switch processing packets correctly and rapidly. The competition

of state machines is effective way (Section 5.3).710

4.3. State Operations

How to deploy state machines in data plane is critical for success of stateful

data plane. In the OpenFlow version 1.5 [89], a group table is used to support

stateful operations, which can solve problems such as fast failover. However,

its flexibility is limited because it cannot provide enough programmability to715

satisfy diversified requirements of stateful applications. Therefore, several ap-

proaches are proposed to enforce deployment of stateful applications: extensible

match/action table and control flow.

4.3.1. Extensible Match-action Table

OpenFlow’s “match-action” abstraction is innovative to permit a certain720

level of programmability. However, it is still not flexible enough to satisfy de-

mand of network applications. Thus, appropriate forwarding abstractions in

data plane are required. A number of platforms apply the stateful table to im-

plement state machines, which is originated from OpenFlow’s “match-action”

abstractions [4][5][31]. Bianchi et al. [31] found that OpenFlow “match-action”725

primitive can be reused with a broadened semantic. OPP adopts the EFSM

table to finish its stateful operations, which is also an extended version of the

“match-action” table. SDPA proposes a new “match-state-action” paradigm in

39

which state information is maintained and modified within the data plane. The

major difference of “match-action” abstraction compared to “match-transition-730

action” abstraction is the addition of a stateful modification operation. State

modification in the extended “match-action” table usually occurs after matching

packets. In the meantime, the extended “match-action” table splits “actions”

into two types: one is the normal action executing on the packet, and another

is the state action modifying the original state saved in the switch (shown in735

Figure 3). For example, the port knocking (Figure 8) may contain three tables.

A packet would match a flow by the key in the State lookup table, query the

current state in the State machine table and finally update its state by matching

actions in the last table.

4.3.2. Control Flow740

In addition to methods above, the programmable data planes provide more

easy ways to achieve stateful operations [11][58]. P4 provides a DSL (Domain-

specific language) that enables network administrators to design their own

packet process for switches. Specifically, a P4 program should define a Direct

Acyclic Graph (DAG) of “match-action” stages, named control flow, which de-745

fines how packets are processed [90]. The control flow may contain an arbitrary

number of stages. Therefore, how to design multiple suitable stages to control

the correct logic is the key to achieve a complete stateful network application.

For example, HULA [28] designs several stages for different matching, where the

get dst tor is used to extract the destination of packets, the hula logic is used750

as load balancer and the hula to host is used to forward packets. Besides, P4

compiler also offers a special stateful memory, called registers. Their values can

be read and written in actions. The transition of states in P4 represents how

to operate the modification of registers, e.g., HULA defined five register arrays

for storing link and packets information.755

40

5. Schedule and Optimization Technologies

Considering the distributed property of stateful data plane, e.g., distributed

state management and logic operations, it is very important and full of great

challenges to achieve correctness, effectiveness and efficiency. This section will

discuss several fundamental technologies on these issues.760

5.1. Consistency

Inconsistency may lead to error states in state data plane, resulting in exe-

cuting improper logics. Consistent problem is important in stateful data plane.

Two types of consistency are considered in this paper: intra-switch consis-

tency and inter-switch consistency. On one hand, due to state modify765

abstraction on the data plane, inconsistency may occur when packets of the

same flow are read and written in an improper order within a switch. In the

meantime, the inherent consistency problem among switches in stateful data

plane is inevitable due to distributed state management among switches. These

two consistency problems will shake the stability and availability of the whole770

network in varying degrees, and even cause network faults (e.g., incorrectly

skipping firewall policies).

5.1.1. Intra-switch Consistency

Inside switches, the state stored in a given memory is accessed and modified

at a rate that belongs to the fraction of packet processing rate, while read/write775

operations may occupy multiple clock cycles [38]. The interval time from read-

ing a memory location to completing the modification may depend on traffic

pattern, which may potentially lead to concurrent read/write of the same lo-

cation. It will cause inconsistency problem if a read operation precedes the

completion of a write operation in the same memory location. Such situation780

usually occurs when packets of the same flow are processed in parallel. For ex-

ample, assuming that two packets (say p1 and p2) of the same flow consecutively

enter the pipeline at the same time. p1 needs N clock cycles to complete the

memory modification, while p2 only needs M (assume M < N) clocks to access

41

the same memory location. At this time, p1’s modification is not completed yet,785

resulting in inconsistency.

Several solutions have been proposed to solve this issue (see Table 8). For

example, Pontarelli et al. [38] proposed a scheme of using the mixer’s round

robin policy to separate two packets coming from the same flow by N clock

cycles (the time interval from the first table lookup to the last state update).790

DOMINO [11] offers a packet-level solution. Each state is installed in an

atom, which is a special stored cell. Each atom can only modify its own state.

Thus, states are not allowed to be accessed or modified by multiple stages. This

scheme can eliminate inconsistency problem when updating states, but reduces

the flexibility and programmability.795

Cascone et al. [59] came up with a locking scheme. If two packets that require

access to the same portion of the memory arrive back-to-back, processing is

paused for the second packet until the first one has updated the memory. This

seems to be a compromising plan. However, it would affect the line rate at

which the switch sustains one packet per clock cycle.800

Pontarelli et al. [6] pointed out that it is possible to modify their respec-

tive flow states in parallel when processing packets belonging to different flows.

Hence, they used a scheduler to guarantee that there are no two packets from

the same flow are processed in parallel in the pipeline. However, when burst

flow happens, i.e., a large number of packets of the same flow arrive, the latency805

will be increased.

In conclusion, above solutions have both advantages and disadvantages.

Scheduling packets’ order is easy to implement but may cause latency when

packets originated from the same flow burst. Lock scheme violates the principle

of processing packet at line rate. Atom operation overcomes the concern that810

a packet stays too long in switch, but it may lack flexibility in programming.

Intra-switch consistency problem severely affects the feasibility of network ap-

plication [91]. Hence, it is necessary to investigate an effective way to solve this

problem.

42

5.1.2. Inter-switch Consistency815

Distributed state management imposes potential inconsistency risks, which

may cause incorrect strategies to switches and even lead to network instability.

However, it is impossible that states saved in the data plane completely achieve

strong consistency without enormous cost. Specifying a location for storing all

states seems to be an effective way. SNAP [9] puts forward an idea of one big820

switch, which adopts a method that all states are saved on a specified switch,

and drains all the packets that need to be processed into the switch. This

strategy can reduce memory consumption of most switches, but the switch that

is designated to keep all states would become a bottleneck. Moreover, network

problems would be arisen if the switch is down (e.g., states are unrecoverable).825

How to collect exact states from data plane is also a challenging issue.

Muqaddas et al. [92] proposed a state duplication scheme based on eventual

consistency in SNAP platform. They pointed out that switches with limited

amount of hardware resources are difficult to execute complex algorithms for

employing strong consistency. Hence, they considered the replication scheme830

based on eventual consistency, and demonstrated that the method can bring

low complexity while maintaining small replication error among replicas.

Sviridov et al. [93] proposed a relatively simple way to ensure consistency

in network-wide by sending update messages and state synchronization trig-

gered by certain conditions. They designed a state replication scheme based835

on the eventual consistency to provide state synchronization, and foresaw three

different scenarios in order to achieve state synchronization.

Achieving strong consistency requires some consumption of switch resources.

Accomplishing eventual consistency may lead transient error. The involvement

of controller can apply in delay insensitive tasks. How to synchronize stateful840

data plane with support for state monitoring and management is still a chal-

lenge [94][95][96].

43

Figure 9: Process of migration in Swing state [12]

5.2. Migration

Migration plays an important role in ensuring high availability of network.

When switch fails or network server requirements are changed (e.g., network up-845

date), migration is needed. For example, states in switches need to be migrated

from one switch to another, which should guarantee correct network behaviors.

In stateless data plane, the execution of migration is mainly determined by the

controller [97] or middlebox [98]. The controller monitors the changes of the

environment in real time and produces corresponding countermeasures. How-850

ever, since each switch maintains its own states in stateful data plane, migration

becomes much more complex. The major challenge is that how to consistently

migrate states from the original switch to the new switch without affecting the

network.

Fortunately, stateful data plane has its own unique mode of state transmis-855

sion, some states maintained by switch can be learned by observing incoming

traffic [2]. In other word, switch can correctly update some own states based on

current received packets without acknowledging any phase of installed state ma-

44

chines. For example, the variable flowlet time in HULA [28] can be overwritten

by incoming packets.860

Nevertheless, not all states in switches can be synchronized by the over-

ridway of packet-carrying propagation. Luo et al. [12] proposed a consistent

migration for data plane applications that requires strong-consistency network-

wide. At first, they categorized P4 states into two types: soft state and hard

state. A state is soft if its value is computed from random variables, which865

is usually used for optimization purposes in congestion control algorithms or

scheduling. For example, the states stored in the variable flowlet time [28]

depend on packet arrival times. Soft states needn’t to be migrated since the

functions can tolerate inconsistency by design. In contrast, hard states are

maintained deterministically and explicitly. They cannot be correctly updated870

from packets or flow traffic. For example, a switch can not recover which phase

of safety certifications justified by current traffics in port knocking (shown in

Figure 8). And then, they consider two forwarding modes: state pickup and

state putdown. A migration’s source device in the mode of state pickup will

record state values, and tunnel a clone packet encapsulating the state values to875

the destination device. In the mode of state putdown, the destination switch of

migration will decapsulate the packet to obtain the state values while overwrit-

ing its variables. These two modes define state migration from source device to

destination device. Finally, they design an augmentation procedure to support

these forwarding modes for automatic migration at runtime. Before migration,880

controller classifies state types and augments P4 programs at deploy time. The

process of migration is shown in Figure 9. Inconsistent migration is rare, mainly

caused by two issues: (1) packet re-ordering and loss, and (2) inconsistent hash

collisions between different hash implementations.

He et al. [33] discussed two alternatives to migrate states in P4. One is trans-885

ferring states directly in data plane. Another is collecting states from the data

plane and installing on target switches by controller. They recommended the

second option since the first method should require network function nodes to

generate data plane packets with payloads of state information. The controller

45

periodically fetches states and stores in database. Controller only redistributes890

states that are involved in migration. Experiments showed that it has no mi-

grated packet loss while introducing additional forwarding latency. However,

since the total migration time increases with the number of states, the latency

will be unacceptable when there are too many states needed to be migrated.

Recently, He et al. [99] proposed a state management framework, which895

provides an automated and consistent state management in P4. They analyzed a

P4 program as a control flow graph and excluded all stateless nodes to provide all

stateful operations, which quickly identifies the network states that are critical

for data plane reconfigurations (e.g., migration). This is an important step to

automatically analyze states from source codes for migration.900

5.3. Composition optimization

The trend of network application development is diversified and complicated.

A single network device may carry multiple network programs with distinct

functions. Composition optimization becomes critical to their performance. It

can not only reduce extra overhead generated by multiple programs in the data905

plane and the assumption of switch resources, but also speed up processing

and optimize overlapped logics among network functions. In addition, careful

inspection for composition can also avoid conflicts that may occur when multiple

state machines co-exist in a single switch [26].

The idea of composition in SDN can provide inspiration for composition910

in stateful data plane [100][101]. To let multiple programs working mutually

without conflict, some platforms have discussed the composition of network

functions in compilers [9][26]. Unfortunately, they did not provide solutions on

composition in detail. Table 8 lists three solutions for composition optimization.

Hancock et al. [102] proposed a portable virtualization solution in data915

plane to offer simple composition. By virtualizing a device into multiple de-

vices through different ports, multiple programs can be run on one device. This

method is simple, effective and easy to implement. However, it is unscalable

since it use software to emulate hardware to provide full virtualization [103].

46

Zhang et al. [90] drove the composition happening on pipelines. Considering920

that a control flow in P4 programs is a DAG (Directed Acyclic Graph), two

steps are required for composition. Firstly, each control flow is analyzed and

a “match-action stage” is divided into three fixed functional pipelines. Next,

a DAG is converted into a uniform linear sequence using topological sorting

algorithm. The authors proved that it prevails Hyper4 [102] in performance.925

However, this approach would waste a lot of resources in virtualization.

Zheng et al. [103] explored an optimization problem: merging two weighted

DAGs into one while maximizing overlap. This problem is proved to be NP-

Complete. Then, a heuristic algorithm is proposed to solve this problem, and

the feasibility of the algorithm is demonstrated through experiments.930

Above solutions are all designed for P4 programs and enlighten researchers

on the problem of composition, especially the composition of DAG. But they

are not suitable for other platforms, e.g., network functions exploited by the

extensible match-action table. Hence, due to the limitation of different platforms

with their own distinct compilers, it’s still significant to explore a more general935

way of composition optimization.

5.4. Placement

The most obvious feature of stateful data plane is that state management

and stateful processing can be offloaded to data plane, which brings many ad-

vantages. However, due to limitations of switches, e.g., limited memory and940

computation sources, controller is still indispensable for sophisticated functions.

In this section, we discuss about two kinds of placement issues related to stateful

data plane: state placement and logic placement.

5.4.1. State Placement

Network devices keep their own states independently in stateful data plane,945

and the value of states on each device may be different. Such distributed scheme

is widely used. However, the challenge is that the states are difficult to man-

age or even synchronize if it needs. In order to facilitate state management,

47

some proposals offer a centralized management. For example, SNAP [9] uses a

centralized scheme that uniformly places states in a specific switch in the data950

plane for maintenance. It is easy to manage and synchronize different types of

network states in data plane directly. However, the switch may become bottle-

necks. An improved solution in [92] proposed a backup placement and discussed

the state migration based on eventual consistency to improve robustness of the

centralized management.955

On the other hand, not all states need to be stored on switches. Two types

of states can be considered to inhabit on controllers. First, states that may have

low usage can be placed on controllers to save memory resources on switches.

For example, a phantom state on controller is used to solve this problem in

FAST [26]. Second, states, which require complex computation that exceeds960

abilities of switches, can also be stored on controllers. For example, if computing

the average flow rate using a counter is hard in switches, the controller could

periodically fetch the counter to compute the result. It is worth noting that

these states should allow inconsistency for a certain period of time, otherwise it

will arise risk of network errors.965

Storing and managing states in data plane can accelerate execution of oper-

ation logics, but not all operations are supported due to hardware limitation of

switches. Maintaining state on the controller can take full advantage of the com-

puting power on controllers. However, it only allows delay insensitive states. In

practice, the placement of state could consider a combination of both switches970

and controllers according to requirements of applications.

5.4.2. Logic Placement

By elaborating design, network functions can be deployed in data plane di-

rectly. However, in order to ensure the performance and efficiency of packet for-

warding, existing packet processing components of switches are usually designed975

as simple as possible [16]. In other words, it is expensive, if not impossible, to

implement sophisticated functions on a switch while guaranteeing forwarding

speed. Hence, complex logics can consider to be implemented on controllers,

48

such as complex mathematical calculation and dynamic network scheduling.

Network monitoring is intrinsically suitable for deploying on stateful data980

plane. However, some key components of network monitoring are too complex

to implement on switches, e.g., multiplications and divisions are required in

average and EWMA [10]. The usual way is to leave them to controller. Some

stateful data plane platforms and applications involve controller in their design

and implementation [26][76].985

When network strategies need to be changed, controller can provide real-

time dynamic scheduling. Firstly, it can dynamically modify internal processing

logic of switches (e.g., state machines). Some platforms allow the operator to re-

place old logics to satisfy changing environment [5][26]. In SDPA, the controller

proactively initiates a new record of states when an application needs stateful990

processing. FAST offers dynamically management to local state machines at

individual switches. Secondly, when network is instable, controller can quickly

lead the process of network recovery. For example, controller is involved when

migration is needed [12].

5.5. Remarks995

In this section, several fundamental technologies are discussed to enhance

the performance of stateful data plane. The consistency problems is critical for

the correctness and stability of network. Migration improves fault tolerance of

states. The composition optimization can enhance the speed of stateful process-

ing and prevent errors during processing multiple applications. The placement1000

separately discusses different positions of states and logics. In the most of these

fundamental problems and technologies, controller still plays an important role

in implementations of stateful data plane. Most platforms let controller initi-

ate network functions in data planes. Dynamic changing of functions is also

supported widely [104], which can be achieved through network update (e.g.,1005

migration). Moreover, controller can provide complex computations and opti-

mization schemes for correctness, effectiveness and stability of networks. Hence,

currently, controller is still important and indispensible for stateful data plane.

49

T
a
b

le
8
:

S
ch

ed
u

le
a
n

d
o
p

ti
m

iz
a
ti

o
n

te
ch

n
o
lo

g
ie

s

S
o
lu

ti
o
n

s
fo

r

In
tr

a
-s

w
it

ch
C

o
n

si
st

e
n

c
y

R
e
f.

S
o
lu

ti
o
n

A
ff

e
c
t

li
n

e
ra

te

O
P

P
[4

]

F
lo

w
B

la
ze

[6
]

O
p

en
S

ta
te

[3
8
]

S
ch

ed
u

le
p

a
ck

et
s’

o
rd

er
!

D
O

M
IN

O
[1

1
]

A
to

m
o
p

er
a
ti

o
n

#

L
o
ck

sc
h

em
e

[5
9
]

L
o
ck

sc
h

em
e

!

S
o
lu

ti
o
n

s
fo

r

In
te

r-
sw

it
ch

C
o
n

si
st

e
n

c
y

R
e
f.

S
o
lu

ti
o
n

A
d

v
a
n
ta

g
e

D
is

a
d

v
a
n
ta

g
e

S
N

A
P

[9
]

C
en

tr
a
li

ze
d

st
o
ra

g
e

E
a
sy

to
m

a
n

a
g
e

E
a
sy

to
b

e
th

e
b

o
tt

le
n

ec
k

E
ve

n
tu

a
l

co
n

si
st

en
cy

[9
2
]

S
ta

te
d

u
p

li
ca

ti
o
n

sc
h

em
e

E
a
sy

to
re

a
li

ze
M

ay
b

e
in

tr
a
n

si
en

t
in

co
n

si
st

en
cy

L
O

D
G

E
[9

3
]

S
y
n

ch
ro

n
iz

a
ti

o
n

m
es

sa
g
es

E
a
sy

to
re

a
li

ze
C

o
n

su
m

e
b

a
n

d
w

id
th

C
o
m

p
o
si

ti
o
n

O
p

ti
m

iz
a
ti

o
n

R
e
f.

S
o
lu

ti
o
n

D
e
g
re

e
o
f

d
iffi

c
u

lt
y

H
y
p

er
4

[1
0
2
]

U
si

n
g

th
e

p
o
rt

to
is

o
la

te
E

a
sy

H
y
p

er
V

[9
0
]

S
im

p
le

D
A

G
co

m
p

o
si

ti
o
n

S
im

p
le

P
4
V

is
o
r

[1
0
3
]

W
ei

g
h
t

D
A

G
co

m
p

o
si

ti
o
n

N
P

-c
o
m

p
le

te
p

ro
b

le
m

50

6. Implementation Considerations for Stateful Data Plane

In recent years, programmable switches have gradually aroused interest1010

among academia and industry. Stateful data plane platforms and applications

can be implemented based on these programmable switches. In this section,

we will discuss current network devices for stateful data plane, as well as their

hardware limitations including computation and memory.

6.1. Available Implementations1015

Benefiting from the flexibility and programmability offered by current novel

programmable switches, it is convenient for researchers to implement switch

architecture with customized functions and structures running on stateful data

plane [105]. Next, we will discuss both software and hardware programmable

switches [15][106] for stateful data plane.1020

A software switch executes entire processing logic on a commodity CPU on

top of a fast packet-classification algorithm/data structure [41]. Currently, Open

vSwitch (OVS) and CPqD switches [39] are the most popular OpenFlow software

switches. Stateful data plane platforms use the programmability of them to

realize specific functionality of switches[5][26][36]. OpenState softswitch is an1025

earlier software switch developed based on CPdQ to provide stateful processing.

SDPA extends Open vSwitch to support “match-state-action” paradigm for

stateful forwarding. The secure channel for communication with controller is

modified to allow controller to be able to directly initialize and configure stateful

applications on switches. Besides, the proprietary switch construct can be easily1030

designed via using the programmability of Open vSwitch. PISCES [48] is a

P4 customized software switch derived from Open vSwitch, which is the first

software switch that allows custom protocol specification in a high-level DSL

without requiring direct modifications for switch source code. Evaluation results

show that PISCES programs are about 40 times shorter than equivalent changes1035

to Open vSwitch source code.

For hardware programmable switches, RMT (Reconfigurable Match Tables) [49]

offers flexible match table configuration, definition of arbitrary headers and

51

header sequences, and state update per packet. Alternatively, dRMT [50] has

significant flexibility due to its memory and compute disaggregation. However,1040

both RMT and dRMT can not allow multiple stages to access the same state

block mutually without consuming too much memory space. On the hardware

implementation, FPGA [40][42] can be used to implement data plane functional-

ity, while using a dedicated packet classification engine achieved in TCAM chips.

Pontarelli et al. [38] showed the feasibility of hardware implementation based1045

on FPGA and also discussed on the performance achievable by using an ASIC

to implement OpenState switch. FlowBlaze [6] discusses the implementation

on NetFPGA SmartNIC to support a wide range of complex network functions,

which achieves low latency and consumes relatively few energy. In addition to

FPGA, Li et al. [107] proposed a heterogeneous programmable hardware archi-1050

tecture consisting of a CPU and a GPU. Besides, there are also a number of

vendors dedicated hardware switches that can provide high-performance pro-

grammability [108].

6.2. Hardware Limitations

Current innovations in switching hardware allow flexible per-packet process-1055

ing and the ability to maintain limited mutable state at switches without sacrific-

ing performance (e.g. RMT [49], FlexPipe [109], Barefoot’s Tofino2 switch [108],

Cavium XPliant switches [110]). But there still exist some limitations in these

designs, which directly affects the feasibility and complexity of implementing

meaningful programs in stateful data plane. Here, we mainly focus on limita-1060

tions of computation and memory.

6.2.1. Compute capacity

In order to process packets at line rate, today’s programmable switching

hardware has computing limitations. For example Barefoot Tofino [108] sup-

ports 12 stages per pipeline and multiple pipelines (e.g., 2 to 4) per device. This1065

limitation restricts functionalities implementing in data plane. For example, a

server function chain includes multiple network functions implementing in a

52

T
a
b

le
9
:

H
a
rd

w
a
re

L
im

it
a
ti

o
n

T
y
p

e
P

ro
b

le
m

s
N

eg
a
ti

ve
a
ff

ec
ti

o
n

S
o
lu

ti
o
n

C
om

p
u

ta
ti

on
L

im
it

ed
st

ag
es

in
p

ip
el

in
e

R
es

tr
ic

t
fl

ex
ib

le
fu

n
ct

io
n

a
li

ti
es

(1
)

C
o
m

p
o
si

ti
o
n

(2
)

C
o
n

ca
te

n
a
ti

n
g

p
ip

el
in

e

L
im

it
ed

op
er

at
io

n
s

C
a
n

n
o
t

re
a
li

ze
so

m
e

a
p

p
li

ca
ti

o
n

s
(1

)
lo

o
k

u
p

ta
b

le
[1

1
1
][

1
0
]

M
em

or
y

ca
p

ac
it

y
S

ca
rc

e
av

ai
la

b
le

m
em

o
ry

D
et

er
io

ra
te

a
p

p
li

ca
ti

o
n

p
er

fo
rm

a
n

ce
(1

)
C

o
n
tr

o
ll
er

in
vo

lv
em

en
t

[2
6
]

(2
)

E
x
te

rn
a
l

D
R

A
M

a
cc

es
s

[1
1
2
][

1
1
3]

[1
1
4
]

53

single switch [33]. The problem can be mitigated by application composition

(Section 5.3). But if there is no or few overlap between different applications,

the method is not effective. Another way is to concatenate several pipelines1070

to prolong processing stages. But it incurs latency per packet while reduces

throughout.

Another issue is that programmable switches only support basic operations,

e.g., addition and subtraction, bitwise operation. It is difficult to provide com-

plex operations since they are expensive executing in hardware chip, e.g., mul-1075

tiplication, division and loop. These complex computations are particularly es-

sential in some applications [10][111]. For example, network traffic entropy is a

well indication on traffic distribution across the network (e.g., DDoS detection).

The entropy computation consists of two complex operations, i.e., logarithm and

division, which can be approximate to exponential functions. Ding et al. [111]1080

proposed two novel algorithms, P4Log and P4Exp, to estimate logarithms and

exponential functions with a given precision by only using P4-supported arith-

metic operations. They successfully implemented entropy-based applications in

programmable switches. Sharma et al. [10] concluded several requirements of

complex computation in switches. For example, RCP (Rate Control Protocol)1085

needs to compute the fair rate by multiplication and division operations for op-

timizing the link utilization [115]. They transferred these complex computation

to table lookup which pre-defines logarithms mapping results.

6.2.2. Memory Capacity

A very fast memory is essential for packet processing at high speed, e.g.,1090

TCAM or SRAM, which is expensive and only available in small capacities [116].

For example, Barefoot Tofino [108] provides few tens of MBs of available mem-

ory. This limitation is manifested in restricting to the amount of storing states.

Applications that are sensitive to memory size would be affected or even infea-

sible. For example, load balancing [28] lapses into slower, accuracy of sketching1095

or monitoring applications declines, and even network diagnosis [8] that relies

on per-flow or per-packet monitoring would be infeasible if the number of con-

54

nections is large [117]. Hence, most of the applications need to make tradeoffs

between performance and memory usage.

Simply increasing the memory size on switches brings challenges to the de-1100

sign of switches, e.g., consuming additional chip area [11], not matching packet

processing speed. The controller can be used as an auxiliary memory to store

states that are rarely read [26]. For example, a NAT maintains a statistics state

of the number of total packets [118]. However, this method does not suitable

for states that requires many writing/reading, since latency between switches1105

and the controller CPU is high and unpredictable.

Other works try to enable network switches to access external memory [112][113][114].

DRAM can be used as an external memory since it is more affordable than on-

chip buffer memory. Kim et al. [112] aimed to the feasibility of accessing remote

memory from programmable switches. They assume that RDMA-capable NICs1110

in remote memory servers directly connect switches. So switches can access the

remote memory via the channel between the RDMA-capable NICs and switches

while processing packets by DRAM primitives without any involvement of CPU.

Beckmann et al. [113] envisioned a combination of a P4-capable ASIC with a

DRAM scale match-action table. A packet firstly is preconstructed the match1115

key field in ASIC, and sent to a FPGA which stores network states in DRAM.

Secondly, the FPGA sends back the original packet with matching results. Fi-

nally, corresponding actions would be executed when the ASIC received the

packet. In this work, ASIC needs to consume 100Gbps Ethernet ports for high

bandwidth connection to FPGAs. Kim et al. [114] explored a new approach1120

that switch ASICs can access external DRAM purely in the data plane without

involving CPUs on servers. If the data plane does not need to access DRAM,

packets will be forwarded normally. Otherwise, it crafts a packet with DRAM

header in pipeline and sends it to the DRAM server. Then the server replies

the packet with matching results that needs to be processed in pipeline again.1125

Therefore, this method will incur extra latency.

The basic idea of the three methods is setting an external DRAM memory.

Although they would incur extra latency, they all extend memory in switches

55

while keep processing at line rate. However, they should consider the re-order

of packets because some packets need to enter in the pipeline twice.1130

6.3. Remarks

The performance of switches greatly affects deployment of stateful data plane

applications. This section lists a number of programmable switches and analyzes

hardware limitations of current programmable switches. Both computation and

memory limitations can affect the feasibility and flexibility for the design of1135

stateful applications.

7. Future Research Discussions

There are many aspects need to be further improved in stateful data plane,

as we conclude in Figure 10. How to optimize stateful data plane on appropri-

ate switches, and develop high performance applications on stateful data plane1140

are the mainstreams of stateful data plane research. Several potential future

research issues on stateful data plane are summarized as below:

1. A unified standard for stateful data plane. There is no overall win-

ner for stateful data plane today. P4 seems to be a main trend compiler

in recent years. Although the appearance of P4 is to tackle the short-1145

age of openflow switch and provide a flexible processing pipeline, it has

developed to a popular switching architecture following by many famous

vendors and group (e.g., VMware, Google). A number of mature network

applications has exploited by P4 (e.g., Hula [28]). Researchers also have

leveraged it to address many network problems [117][81]. We believe its1150

potential has not been explored completely. However, some novel stateful

packet processing architectures also show remarkable performance [6][11].

More generic and universal programming languages and switch models for

stateful data plane are expected in future. For example, sluice [119] is a

network-wide specification of the data plane whose aim is to offer more1155

generic network tasks.

56

Open issues
and future
researches

Im
plem

enting

novel

algorithm
s

Arch
itectu

re

of

sta
teful

data plane

Future

Internet

 architecture

A unified

standard for

 stateful data plane

The involvement

 of controller

 in the stateful

 data plane

Stateful data

 plane can

 ease the

 implementation

 of fu
ture Internet

 architecture

Implementing

 machine learning

 algorithms in

 stateful data plane

Stateful data

 plane can

 benefit in-netw
ork

 com
putation

The development

 potential of

 stateful data

 plane has

 not been

 fully explored

Network

applications

Figure 10: Summary of potential future research issues on stateful data plane

2. The involvement of controller in the stateful data plane. Although

network functions can be implemented directly in stateful data plane with-

out the intervention of controller, controller is still important for stateful

data plane architecture today. Leveraging respective characteristics of the1160

controller and data plane, researchers have deployed a routing strategy

by mutual cooperation of the controller and data plane [120][121]. The

data plane executes simple machine learning models with low accuracy to

decrease the number of monitoring flows that need to upload to the con-

troller. On the other hand, the controller implements complicated mod-1165

57

els with high accuracy for flow prediction. The cooperation makes flow

prediction via machine learning in data center network possible, since it

decreases the communication overhead between the controller and data

plane. Whether and to what extent controller should be involved in im-

plementation of stateful data plane applications still remains to be an open1170

question.

3. The development potential of stateful data plane has not been

fully explored. Ranging from port knocking, which is definitely suitable

for offloading to stateful data plane, to today’s various complicated ap-

plications executed on stateful data plane, a number of talent ideas have1175

come true. There will be more explicit network application requirements

emerging in the future (e.g., In-band Network Telemetry [80][122]), or tra-

ditional available protocol (e.g., FRR in P4 [123]). How to fully exploit the

programmable potential of stateful data plane to provide more powerful

and diversified functions will be one of the concerns in future.1180

4. Implementing machine learning algorithms in stateful data plane

is a challenge. In recent years, machine learning algorithms do have

offered distinct solutions to improve SDN network performance [124].

Researchers consider directly offloading machine learning algorithm to

switches to optimize network [87][120][125]. pForest [87] tries to imple-1185

ment random forest in data plane and experiments prove it has high accu-

racy and flexibility. However, limited computations (e.g., no floating) and

memory introduce great challenges to implementation of machine learning

algorithms in stateful data plane. Setting a look up table to store results

of complex mathematical operations is an effective way to satisfy the need1190

of different machine learning algorithms [126]. The tradeoff of accuracy

and memory usage still needs to be considered. Hence, designing suitable

machine learning models and algorithms that fit stateful data plane, or

enhancing stateful data plane’s capability to support these models and al-

gorithms, will have an important impact on the future ecology of stateful1195

data plane applications.

58

5. Stateful data plane can benefit in-network computation.

Offloading a set of compute operations from end hosts into stateful data

plane is feasible and can provide considerable performance benefits [116].

Currently, the bottleneck in distributed machine learning training shifts1200

from computation to communication. Experiments show that implement-

ing stateful data plane as accelerators can speed up machine learning

training [127][128]. On the other hand, stateful data plane can also help

to take up the performance of some essential applications in cloud ser-

vice (e.g., netcache [30], mapreduce [129]). Except for tackling traditional1205

network problems, how stateful data plane can improve communication

problems in emerging technologies is also an open issue.

6. Stateful data plane can ease the implementation of future Inter-

net architecture. ICN (Information Centric Networking) is a networking

paradigm that breaks the host centered connection mode of TCP/IP and1210

becomes the information (or content) centered mode. In NDN (Named

Data Networking), which is a representative of ICN instantiations, the

problem is that current network equipment cannot be seamlessly extended

to offer NDN data plane functions. To solve this problem, researchers have

implemented NDN router via stateful data plane that offers programma-1215

bilities to satisfy frequent and drastic change in devices’ behavior while

keeps high processing speed [130]. On the other hand, the emerging archi-

tecture SD-ICN [131] integrates the thought of SDN’s central management

into ICN, which realizes some important network applications that have

not been well considered in ICN (e.g., QoS). SD-ICN also faces challenges1220

in the data plane, e.g., the OpenFlow-based data plane fails to consider

the evolution of both ICN protocols and the OpenFlow protocol [132].

Inspired by the successful implementation above, stateful data plane can

be considered to improve such future Internet architecture.

59

8. Conclusions1225

SDN provides a convenient state management to improve the network utiliza-

tion efficiency. However, unnecessary interactions between controller and data

plane brings additional overhead and delay to network. Stateful data plane

architecture allows applications to be deployed directly in data plane without

explicit involvement of controller. Thus network delay and controller overhead1230

can be reduced. In this paper, a comprehensive survey on recent research works

of stateful data plane is conducted. Several existing aspects for stateful data

plane such as basic components, schedule and optimization technologies and im-

plementation consideration are introduced and summarized. Also, the strengths

and weaknesses of existing relevant research results are analyzed.1235

9. Acknowledgement

This work has been partially supported by Chinese National Research Fund

(NSFC) No. 161772235, 61532013 and 61872239; Natural Science Foundation

of Guangdong Province(China) No. 22020A1515010771; Science and Technol-

ogy Program of Guangzhou(China) No. 3202002030372; the UK Engineering1240

and Physical Sciences Research Council (EPSRC) grants EP/P004407/2 and

EP/P004024/1; the Innovate UK project 47198.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, J. Turner, OpenFlow: enabling innovation in cam-1245

pus networks, ACM SIGCOMM Computer Communication Review 38 (2)

(2008) 69–74.

[2] C. Cascone, D. Sanvito, L. Pollini, A. Capone, B. Sansò, Fast failure

detection and recovery in SDN with stateful data plane, International

Journal of Network Management 27 (2) (2017) e1957.1250

60

[3] S. M. Mousavi, M. St-Hilaire, Early detection of ddos attacks against sdn

controllers, in: 2015 International Conference on Computing, Networking

and Communications (ICNC), IEEE, 2015, pp. 77–81.

[4] G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone, C. Cas-

cone, Open Packet Processor: a programmable architecture for wire speed1255

platform-independent stateful in-network processing, in: arXiv preprint

arXiv:1605.01977, 2016.

[5] C. Sun, J. Bi, H. Chen, H. Hu, Z. Zheng, S. Zhu, C. Wu, SDPA: Toward a

stateful data plane in software-defined networking, in: IEEE/ACM Trans-

actions on Networking, 2017.1260

[6] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi,

D. Sanvito, G. Siracusano, A. Capone, M. Honda, et al., Flowblaze: State-

ful packet processing in hardware, in: Proceedings of the 16th USENIX

Conference on Networked Systems Design and Implementation, USENIX

Association, 2019.1265

[7] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tulumello, G. Bianchi,

Implementing advanced network functions for datacenters with stateful

programmable data planes, in: Local and Metropolitan Area Networks

(LANMAN), 2017 IEEE International Symposium on, IEEE, 2017, pp.

1–6.1270

[8] M. Ghasemi, T. Benson, J. Rexford, Dapper: Data plane performance

diagnosis of tcp, in: Proceedings of the Symposium on SDN Research,

ACM, 2017, pp. 61–74.

[9] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, D. Walker, SNAP:

Stateful network-wide abstractions for packet processing, in: Proceedings1275

of the 2016 ACM SIGCOMM Conference, ACM, 2016, pp. 29–43.

[10] N. K. Sharma, A. Kaufmann, T. Anderson, C. Kim, A. Krishnamurthy,

J. Nelson, S. Peter, Evaluating the power of flexible packet processing for

61

network resource allocation, in: Proceedings of the 14th USENIX Confer-

ence on Networked Systems Design and Implementation, USENIX Asso-1280

ciation, 2017, pp. 67–82.

[11] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrish-

nan, G. Varghese, N. McKeown, S. Licking, Packet transactions: High-

level programming for line-rate switches, in: Proceedings of the 2016 ACM

SIGCOMM Conference, ACM, 2016, pp. 15–28.1285

[12] S. Luo, H. Yu, L. Vanbever, Swing state: Consistent updates for stateful

and programmable data planes, in: Proceedings of the Symposium on

SDN Research, ACM, 2017, pp. 115–121.

[13] A. Shaghaghi, M. A. Kaafar, R. Buyya, S. Jha, Software-defined network

(SDN) data plane security: Issues, solutions and future directions, in:1290

arXiv preprint arXiv:1804.00262, 2018.

[14] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, M. Conti, A survey on

the security of stateful SDN data planes, IEEE Communications Surveys

& Tutorials 19 (3) (2017) 1701–1725.

[15] R. Bifulco, G. Rétvári, A survey on the programmable data plane: Ab-1295

stractions architectures and open problems, in: Proc. IEEE HPSR, 2018.

[16] E. Kaljic, A. Maric, P. Njemcevic, M. Hadzialic, A survey on data plane

flexibility and programmability in software-defined networking, IEEE Ac-

cess 7 (2019) 47804–47840.

[17] F. Bannour, S. Souihi, A. Mellouk, Distributed SDN control: Survey,1300

taxonomy, and challenges, IEEE Communications Surveys & Tutorials

20 (1) (2017) 333–354.

[18] W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie, A survey on software-

defined networking, IEEE Communications Surveys & Tutorials 17 (1)

(2015) 27–51.1305

62

[19] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-

molky, S. Uhlig, Software-defined networking: A comprehensive survey,

Proceedings of the IEEE 103 (1) (2015) 14–76.

[20] J. Xie, D. Guo, Z. Hu, T. Qu, P. Lv, Control plane of software defined

networks: A survey, Computer communications 67 (2015) 1–10.1310

[21] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,

S. Shenker, NOX: towards an operating system for networks, ACM SIG-

COMM Computer Communication Review 38 (3) (2008) 105–110.

[22] POX, https://github.com/noxrepo/pox, Access on: 2019.

[23] J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: Towards a1315

model-driven SDN controller architecture, in: Proceeding of IEEE In-

ternational Symposium on a World of Wireless, Mobile and Multimedia

Networks 2014, IEEE, 2014, pp. 1–6.

[24] Project floodlight, http://www.projectfloodlight.org/, Access on:

2019.1320

[25] D. Erickson, The beacon OpenFlow controller, in: Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined net-

working, ACM, 2013, pp. 13–18.

[26] M. Moshref, A. Bhargava, A. Gupta, M. Yu, R. Govindan, Flow-level

state transition as a new switch primitive for SDN, in: Proceedings of the1325

third workshop on Hot topics in software defined networking, ACM, 2014,

pp. 61–66.

[27] W. Han, H. Hu, Z. Zhao, A. Doupé, G.-J. Ahn, K.-C. Wang, J. Deng,

State-aware network access management for software-defined networks, in:

Proceedings of the 21st ACM on Symposium on Access Control Models1330

and Technologies, ACM, 2016, pp. 1–11.

63

https://github.com/noxrepo/pox
http://www.projectfloodlight.org/

[28] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, Hula: Scalable

load balancing using programmable data planes, in: Proceedings of the

Symposium on SDN Research, ACM, 2016, p. 10.

[29] F. Nife, Z. Kotulski, Multi-level stateful firewall mechanism for software1335

defined networks, in: International Conference on Computer Networks,

Springer, 2017, pp. 271–286.

[30] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, I. Stoica,

Netcache: Balancing key-value stores with fast in-network caching, in:

Proceedings of the 26th Symposium on Operating Systems Principles,1340

2017, pp. 121–136.

[31] G. Bianchi, M. Bonola, A. Capone, C. Cascone, OpenState: programming

platform-independent stateful OpenFlow applications inside the switch,

ACM SIGCOMM Computer Communication Review 44 (2) (2014) 44–51.

[32] S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh, M. Seltzer, Parking1345

packet payload with p4, arXiv preprint arXiv:2006.05182.

[33] M. He, A. Basta, A. Blenk, N. Deric, W. Kellerer, P4NFV: An NFV

architecture with flexible data plane reconfiguration, in: 2018 14th In-

ternational Conference on Network and Service Management (CNSM),

IEEE, 2018, pp. 90–98.1350

[34] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L. J. Wobker, In-band

network telemetry via programmable dataplanes, in: ACM SIGCOMM,

2015.

[35] K.-T. Cheng, A. S. Krishnakumar, Automatic functional test generation

using the extended finite state machine model, in: 30th ACM/IEEE De-1355

sign Automation Conference, IEEE, 1993, pp. 86–91.

[36] OpenState softswitch, https://github.com/OpenState-SDN/

ofsoftswitch13, Access on: 2019.

64

https://github.com/OpenState-SDN/ofsoftswitch13
https://github.com/OpenState-SDN/ofsoftswitch13
https://github.com/OpenState-SDN/ofsoftswitch13

[37] G. Bianchi, M. Bonola, A. Capone, C. Cascone, S. Pontarelli, Towards

wire-speed platform-agnostic control of OpenFlow switches, in: arXiv1360

preprint arXiv:1409.0242, 2014.

[38] S. Pontarelli, M. Bonola, G. Bianchi, A. Capone, C. Cascone, Stateful

OpenFlow: Hardware proof of concept, in: 2015 IEEE 16th International

Conference on High Performance Switching and Routing (HPSR), IEEE,

2015, pp. 1–8.1365

[39] OpenFlow 1.3 software switch, https://cpqd.github.io/

ofsoftswitch13/, Access on: 2019.

[40] N. Zilberman, Y. Audzevich, G. A. Covington, A. W. Moore, NetFPGA

SUME: Toward 100 Gbps as research commodity, IEEE Micro 34 (5)

(2014) 32–41.1370

[41] Open vswitch, https://www.openvswitch.org/, Access on: 2016.

[42] Onetcard, https://www.xilinx.com/products/boards-and-kits.

html, Access on: 2019.

[43] S. Smolka, S. Eliopoulos, N. Foster, A. Guha, A fast compiler for netkat,

ACM SIGPLAN Notices 50 (9) (2015) 328–341.1375

[44] M. Shahbaz, N. Feamster, The case for an intermediate representation for

programmable data planes, in: Proceedings of the 1st ACM SIGCOMM

Symposium on Software Defined Networking Research, ACM, 2015, p. 3.

[45] M. Honda, F. Huici, G. Lettieri, L. Rizzo, mswitch: a highly-scalable,

modular software switch, in: Proceedings of the 1st ACM SIGCOMM1380

Symposium on Software Defined Networking Research, ACM, 2015, p. 1.

[46] Linux socket filtering aka berkeley packet filter (BPF), https://www.

kernel.org/doc/Documentation/networking/filter.txt, Access on:

2019.

65

https://cpqd.github.io/ofsoftswitch13/
https://cpqd.github.io/ofsoftswitch13/
https://cpqd.github.io/ofsoftswitch13/
https://www.openvswitch.org/
https://www.xilinx.com/products/boards-and-kits.html
https://www.xilinx.com/products/boards-and-kits.html
https://www.xilinx.com/products/boards-and-kits.html
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

[47] p4lang/behavioral-model, https://github.com/p4lang/1385

behavioral-model, Access on: 2019.

[48] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, J. Rex-

ford, PISCES: A programmable, protocol-independent software switch, in:

Proceedings of the 2016 ACM SIGCOMM Conference, ACM, 2016, pp.

525–538.1390

[49] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,

F. Mujica, M. Horowitz, Forwarding metamorphosis: Fast programmable

match-action processing in hardware for SDN, ACM SIGCOMM Com-

puter Communication Review 43 (4) (2013) 99–110.

[50] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,1395

G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, et al., dRMT:

Disaggregated programmable switching, in: Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, ACM, 2017,

pp. 1–14.

[51] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,1400

H. Weatherspoon, P4FPGA: A rapid prototyping framework for P4, in:

Symposium on SDN Research, 2017.

[52] S. Ibanez, G. Brebner, N. McKeown, N. Zilberman, The P4-¿NetFPGA

workflow for line-rate packet processing, in: Proceedings of the 2019

ACM/SIGDA International Symposium on Field-Programmable Gate Ar-1405

rays, ACM, 2019, pp. 1–9.

[53] The P4 language specification version 1.1.0, http://p4.org/

wp-content/uploads/2016/03/p4_v1.1.pdf, Access on: 2016.

[54] OpenState demo, http://www.beba-project.eu/presentations/

2015-openstate-live-demo.pdf, Access on: 2015.1410

66

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://p4.org/wp-content/uploads/2016/03/p4_v1.1.pdf
http://p4.org/wp-content/uploads/2016/03/p4_v1.1.pdf
http://p4.org/wp-content/uploads/2016/03/p4_v1.1.pdf
http://www.beba-project.eu/presentations/2015-openstate-live-demo.pdf
http://www.beba-project.eu/presentations/2015-openstate-live-demo.pdf
http://www.beba-project.eu/presentations/2015-openstate-live-demo.pdf

[55] From dumb to smarter switches in software defined networks:

towards a stateful data plane, http://openstate-sdn.org/pub/

ECOOP2015-OpenState-short-tutorial.pdf, Access on: 2015.

[56] V. Alagar, K. Periyasamy, Extended finite state machine, in: Specification

of Software Systems, Springer, 2011, pp. 105–128.1415

[57] L.foundation. fd.io, https://fd.io/, Access on: 2019.

[58] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., P4: Program-

ming protocol-independent packet processors, ACM SIGCOMM Com-

puter Communication Review 44 (3) (2014) 87–95.1420

[59] C. Cascone, R. Bifulco, S. Pontarelli, A. Capone, Relaxing state-access

constraints in stateful programmable data planes, ACM SIGCOMM Com-

puter Communication Review 48 (1) (2018) 3–9.

[60] G. Bianchi, M. Welzl, A. Tulumello, F. Gringoli, G. Belocchi, M. Faltelli,

S. Pontarelli, Xtra: Towards portable transport layer functions, IEEE1425

Transactions on Network and Service Management 16 (4) (2019) 1507–

1521.

[61] A. Tulumello, G. Belocchi, M. Bonola, S. Pontarelli, G. Bianchi, Pushing

services to the edge using a stateful programmable dataplane, in: 2019

European Conference on Networks and Communications (EuCNC), IEEE,1430

2019, pp. 389–393.

[62] C. Cascone, L. Pollini, D. Sanvito, A. Capone, Traffic management ap-

plications for stateful SDN data plane, in: Software Defined Networks

(EWSDN), 2015 Fourth European Workshop on, IEEE, 2015, pp. 85–90.

[63] A. Capone, C. Cascone, A. Q. Nguyen, B. Sanso, Detour planning for fast1435

and reliable failure recovery in SDN with OpenState, in: Design of Reliable

Communication Networks (DRCN), 2015 11th International Conference

on the, IEEE, 2015, pp. 25–32.

67

http://openstate-sdn.org/pub/ECOOP2015-OpenState-short-tutorial.pdf
http://openstate-sdn.org/pub/ECOOP2015-OpenState-short-tutorial.pdf
http://openstate-sdn.org/pub/ECOOP2015-OpenState-short-tutorial.pdf
https://fd.io/

[64] C. H. Benet, A. J. Kassler, T. Benson, G. Pongracz, MP-HULA: Multi-

path transport aware load balancing using programmable data planes, in:1440

Proceedings of the 2018 Morning Workshop on In-Network Computing,

ACM, 2018, pp. 7–13.

[65] V. Olteanu, A. Agache, A. Voinescu, C. Raiciu, Stateless datacenter load-

balancing with beamer, in: Proceedings of the 15th USENIX Conference

on Networked Systems Design and Implementation, USENIX Association,1445

2018, pp. 125–139.

[66] M. Caprolu, S. Raponi, R. Di Pietro, Fortress: An efficient and distributed

firewall for stateful data plane SDN, Security and Communication Net-

works 2019.

[67] F. Rebecchi, J. Boite, P.-A. Nardin, M. Bouet, V. Conan, Traffic monitor-1450

ing and DDoS detection using stateful SDN, in: Network Softwarization

(NetSoft), 2017 IEEE Conference on, IEEE, 2017, pp. 1–2.

[68] F. Rebecchi, J. Boite, P.-A. Nardin, M. Bouet, Conan, DDoS protection

with stateful software-defined networking, International Journal of Net-

work Management 29 (1) (2019) e2042.1455

[69] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li, M. Xu,

J. Wu, Poseidon: Mitigating volumetric ddos attacks with programmable

switches, 2020.

[70] M. Kuka, K. Vojanec, J. Kučera, P. Benáček, Accelerated DDoS attacks

mitigation using programmable data plane, in: 2019 ACM/IEEE Sym-1460

posium on Architectures for Networking and Communications Systems

(ANCS), IEEE, 2019, pp. 1–3.

[71] S. MAHRACH, A. HAQIQ, DDoS flooding attack mitigation in software

defined networks, International Journal of Advanced Computer Science

and Applications 11 (1). doi:10.14569/IJACSA.2020.0110185.1465

URL http://dx.doi.org/10.14569/IJACSA.2020.0110185

68

http://dx.doi.org/10.14569/IJACSA.2020.0110185
http://dx.doi.org/10.14569/IJACSA.2020.0110185
http://dx.doi.org/10.14569/IJACSA.2020.0110185
http://dx.doi.org/10.14569/IJACSA.2020.0110185
http://dx.doi.org/10.14569/IJACSA.2020.0110185

[72] S. A. Mehdi, J. Khalid, S. A. Khayam, Revisiting traffic anomaly detection

using software defined networking, in: International workshop on recent

advances in intrusion detection, Springer, 2011, pp. 161–180.

[73] A. Bianco, P. Giaccone, S. Kelki, N. M. Campos, S. Traverso, T. Zhang,1470

On-the-fly traffic classification and control with a stateful SDN approach,

in: Communications (ICC), 2017 IEEE International Conference on,

IEEE, 2017, pp. 1–6.

[74] D. Sanvito, D. Moro, A. Capone, Towards traffic classification offload-

ing to stateful SDN data planes, in: 2017 IEEE Conference on Network1475

Softwarization (NetSoft), IEEE, 2017, pp. 1–4.

[75] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. Rex-

ford, Heavy-hitter detection entirely in the data plane, in: Proceedings of

the Symposium on SDN Research, ACM, 2017, pp. 164–176.

[76] R. Harrison, Q. Cai, A. Gupta, J. Rexford, Network-wide heavy hitter1480

detection with commodity switches, in: Proceedings of the Symposium

on SDN Research, ACM, 2018, p. 8.

[77] B. Turkovic, J. Oostenbrink, F. Kuipers, Detecting heavy hitters in the

data-plane, in: arXiv preprint arXiv:1902.06993, 2019.

[78] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,1485

A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, et al., Conga: Dis-

tributed congestion-aware load balancing for datacenters, in: Proceedings

of the 2014 ACM conference on SIGCOMM, 2014, pp. 503–514.

[79] Cisco ios netflow, https://www.cisco.com/c/en/us/products/

ios-nx-os-software/ios-netflow/index.html, Access on: 2020.1490

[80] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang, B. Liu,

Y. Liu, Int-path: Towards optimal path planning for in-band network-

wide telemetry, in: IEEE INFOCOM 2019-IEEE Conference on Computer

Communications, IEEE, 2019, pp. 487–495.

69

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

[81] K. A. Vardhan, M. Jakaraddi, G. Shobha, J. Shetty, A. Chala, D. Camper,1495

Design and development of iot plugin for hpcc systems, in: 2019 IEEE 4th

International Conference on Big Data Analytics (ICBDA), IEEE, 2019,

pp. 158–162.

[82] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, M. Mitzen-

macher, Pint: Probabilistic in-band network telemetry, in: Proceedings of1500

the Annual conference of the ACM Special Interest Group on Data Com-

munication on the applications, technologies, architectures, and protocols

for computer communication, 2020, pp. 662–680.

[83] B. Stephens, A. Akella, M. M. Swift, Loom: flexible and efficient nic

packet scheduling, in: Proceedings of the 16th USENIX Conference on1505

Networked Systems Design and Implementation, USENIX Association,

2019, pp. 33–46.

[84] P. Kazemian, G. Varghese, N. McKeown, Header space analysis: static

checking for networks, in: Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation, USENIX Association,1510

2012, pp. 9–9.

[85] S. J. Moon, J. Helt, Y. Yuan, Y. Bieri, S. Banerjee, V. Sekar, W. Wu,

M. Yannakakis, Y. Zhang, Alembic: automated model inference for state-

ful network functions, in: Proceedings of the 16th USENIX Conference

on Networked Systems Design and Implementation, USENIX Association,1515

2019, pp. 699–718.

[86] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, V. Sekar, BUZZ: Testing

context-dependent policies in stateful networks, in: Proceedings of the

13th USENIX Conference on Networked Systems Design and Implemen-

tation, USENIX Association, 2016.1520

[87] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, L. Vanbever,

pForest: In-network inference with random forests, in: arXiv preprint

arXiv:1909.05680, 2019.

70

[88] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, R. Clark, Ki-

netic: Verifiable dynamic network control, in: in Proceedings of the 12th1525

USENIX Conference on Networked Systems Design and Implementation,

2015, pp. 59–72.

[89] OpenFlow switch specification version 1.5.0 (protocol version 0x06),

http://www.opennetworking.org/wp-content/uploads/2014/10/

openflow-switch-v1.5.0.noipr.pdf, Access on: 2019.1530

[90] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, J. Wu, HyperV: A high per-

formance hypervisor for virtualization of the programmable data plane,

in: 2017 26th International Conference on Computer Communication and

Networks (ICCCN), IEEE, 2017, pp. 1–9.

[91] B. Turkovic, F. Kuipers, N. van Adrichem, K. Langendoen, Fast network1535

congestion detection and avoidance using P4, in: Proceedings of the 2018

Workshop on Networking for Emerging Applications and Technologies,

ACM, 2018, pp. 45–51.

[92] A. S. Muqaddas, Control plane in software defined networks and stateful

data planes, 2019.1540

[93] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, G. Bianchi,

LODGE: LOcal Decisions on Global statEs in progrananaable data planes,

in: 2018 4th IEEE Conference on Network Softwarization and Workshops

(NetSoft), IEEE, 2018, pp. 257–261.

[94] A. Shukla, S. J. Saidi, S. Schmid, M. Canini, T. Zinner, A. Feldmann, To-1545

wards consistent SDNs a case for network state fuzzing, in: IEEE Trans-

actions on Network and Service Management, IEEE, 2019.

[95] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, G. Bianchi,

Local decisions on replicated states (LOADER) in programmable data

planes: programming abstraction and experimental evaluation, in: arXiv1550

preprint arXiv:2001.07670, 2020.

71

http://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.noipr.pdf
http://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.noipr.pdf
http://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.noipr.pdf

[96] A. Shukla, S. Fathalli, T. Zinner, A. Hecker, S. Schmid, P4CONSIST:

Towards consistent P4 SDNs, IEEE, 2020.

[97] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,

S. Das, A. Akella, OpenNF: Enabling innovation in network function con-1555

trol, in: ACM SIGCOMM Computer Communication Review, Vol. 44,

ACM, 2014, pp. 163–174.

[98] S. Rajagopalan, D. Williams, H. Jamjoom, A. Warfield, Split/merge: sys-

tem support for elastic execution in virtual middleboxes, in: Proceedings

of the 10th USENIX conference on Networked Systems Design and Imple-1560

mentation, USENIX Association, 2013, pp. 227–240.

[99] M. He, A. Blenk, W. Kellerer, S. Schmid, Toward consistent state manage-

ment of adaptive programmable networks based on P4, in: Proceedings

of the ACM SIGCOMM 2019 Workshop on Networking for Emerging Ap-

plications and Technologies, ACM, 2019, pp. 29–35.1565

[100] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, Composing

software-defined networks, in: Proceedings of the 10th USENIX confer-

ence on Networked Systems Design and Implementation, USENIX Asso-

ciation, 2013, pp. 1–14.

[101] C. Monsanto, N. Foster, R. Harrison, D. Walker, A compiler and run-1570

time system for network programming languages, ACM SIGPLAN Notices

47 (1) (2012) 217–230.

[102] D. Hancock, J. Van der Merwe, Hyper4: Using P4 to virtualize the pro-

grammable data plane, in: Proceedings of the 12th International on Con-

ference on emerging Networking EXperiments and Technologies, ACM,1575

2016, pp. 35–49.

[103] P. Zheng, T. Benson, C. Hu, P4visor: lightweight virtualization and com-

position primitives for building and testing modular programs, in: Pro-

72

ceedings of the 14th International Conference on emerging Networking

EXperiments and Technologies, ACM, 2018, pp. 98–111.1580

[104] P4 runtime, https://p4.org/p4-runtime/, Access on: 2019.

[105] J. Sonchack, A. J. Aviv, E. Keller, J. M. Smith, Turboflow: Information

rich flow record generation on commodity switches, in: Proceedings of the

Thirteenth EuroSys Conference, ACM, 2018, p. 11.

[106] H. Farhad, H. Lee, A. Nakao, Data plane programmability in SDN, in:1585

IEEE International Conference on Network Protocols, 2014.

[107] P. Li, Y. Luo, P4GPU: Accelerate packet processing of a P4 program

with a CPU-GPU heterogeneous architecture, in: Proceedings of the 2016

Symposium on Architectures for Networking and Communications Sys-

tems, ACM, 2016, pp. 125–126.1590

[108] Barefoot tofino, https://barefootnetworks.com/products/

brief-tofino//, Access on: 2020.

[109] Intel flexpipe, https://www.intel.com/content/

www/us/en/ethernet-products/switch-silicon/

ethernet-switch-fm6000-series-brief.html?wapkw=flexpipe,1595

Access on: 2019.

[110] Xpliant ethernet switches, https://www.marvell.com/switching/, Ac-

cess on: 2019.

[111] D. Ding, M. Savi, D. Siracusa, Estimating logarithmic and exponential

functions to track network traffic entropy in p4, in: IEEE/IFIP Network1600

Operations and Management Symposium (NOMS), 2019.

[112] D. Kim, Y. Zhu, C. Kim, J. Lee, S. Seshan, Generic external memory for

switch data planes, in: Proceedings of the 17th ACM Workshop on Hot

Topics in Networks, 2018, pp. 1–7.

73

https://p4.org/p4-runtime/
https://barefootnetworks.com/products/brief-tofino//
https://barefootnetworks.com/products/brief-tofino//
https://barefootnetworks.com/products/brief-tofino//
https://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-series-brief.html?wapkw=flexpipe
https://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-series-brief.html?wapkw=flexpipe
https://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-series-brief.html?wapkw=flexpipe
https://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-series-brief.html?wapkw=flexpipe
https://www.intel.com/content/www/us/en/ethernet-products/switch-silicon/ethernet-switch-fm6000-series-brief.html?wapkw=flexpipe
https://www.marvell.com/switching/

[113] C. Beckmann, R. Krishnamoorthy, H. Wang, A. Lam, C. Kim, Hurdles for1605

a dram-based match-action table, in: 2020 23rd Conference on Innovation

in Clouds, Internet and Networks and Workshops (ICIN), IEEE, 2020, pp.

13–16.

[114] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, S. Seshan, Tea: En-

abling state-intensive network functions on programmable switches, in:1610

Proceedings of the Annual conference of the ACM Special Interest Group

on Data Communication on the applications, technologies, architectures,

and protocols for computer communication, 2020, pp. 90–106.

[115] N. Dukkipati, Rate Control Protocol (RCP): Congestion control to make

flows complete quickly, Citeseer, 2008.1615

[116] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, P. Kalnis, In-network

computation is a dumb idea whose time has come, in: Proceedings of the

16th ACM Workshop on Hot Topics in Networks, 2017, pp. 150–156.

[117] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, J. Rexford, Memory-

efficient performance monitoring on programmable switches with lean al-1620

gorithms, in: arXiv preprint arXiv:1911.06951, 2019.

[118] J. Khalid, A. Akella, Correctness and performance for stateful chained

network functions, in: 16th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 19), 2019, pp. 501–516.

[119] V. Natesh, P. G. Kannan, A. Sivaraman, R. Netravali, Sluice: Network-1625

wide data plane programming, in: Proceedings of the ACM SIGCOMM

2019 Conference Posters and Demos, ACM, 2019, pp. 156–158.

[120] S.-C. Chao, K. C.-J. Lin, M.-S. Chen, Flow classification for software-

defined data centers using stream mining, IEEE Transactions on Services

Computing 12 (1) (2016) 105–116.1630

[121] Y.-H. Huang, W.-Y. Shih, J.-L. Huang, A classification-based elephant

flow detection method using application round on SDN environments, in:

74

2017 19th Asia-Pacific Network Operations and Management Symposium

(APNOMS), IEEE, 2017, pp. 231–234.

[122] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, W. Willinger,1635

Sonata: Query-driven streaming network telemetry, in: Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communi-

cation, ACM, 2018, pp. 357–371.

[123] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, S. Schmid, Supporting

emerging applications with low-latency failover in P4, in: Proceedings of1640

the 2018 Workshop on Networking for Emerging Applications and Tech-

nologies, ACM, 2018, pp. 52–57.

[124] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, Y. Liu, A survey

of machine learning techniques applied to software defined networking

(SDN): Research issues and challenges, IEEE Communications Surveys &1645

Tutorials 21 (1) (2018) 393–430.

[125] Y.-S. Lu, K. C.-J. Lin, Enabling inference inside software switches, in:

2019 20th Asia-Pacific Network Operations and Management Symposium

(APNOMS), IEEE, 2019, pp. 1–4.

[126] Z. Xiong, N. Zilberman, Do switches dream of machine learning? toward1650

in-network classification, in: Proceedings of the 18th ACM Workshop on

Hot Topics in Networks, 2019, pp. 25–33.

[127] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-

ishnamurthy, M. Moshref, D. R. Ports, P. Richtárik, Scaling dis-

tributed machine learning with in-network aggregation, arXiv preprint1655

arXiv:1903.06701.

[128] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, J. Huang, Accelerat-

ing distributed reinforcement learning with in-switch computing, in: 2019

ACM/IEEE 46th Annual International Symposium on Computer Archi-

tecture (ISCA), IEEE, 2019, pp. 279–291.1660

75

[129] L. Chen, G. Chen, J. Lingys, K. Chen, Programmable switch as a parallel

computing device, arXiv preprint arXiv:1803.01491.

[130] S. Signorello, R. State, J. François, O. Festor, Ndn. p4: Programming

information-centric data-planes, in: 2016 IEEE NetSoft Conference and

Workshops (NetSoft), IEEE, 2016, pp. 384–389.1665

[131] M. Arumaithurai, J. Chen, E. Monticelli, X. Fu, K. K. Ramakrishnan,

Exploiting icn for flexible management of software-defined networks, in:

Proceedings of the 1st ACM Conference on Information-Centric Network-

ing, 2014, pp. 107–116.

[132] Q.-Y. Zhang, X.-W. Wang, M. Huang, K.-Q. Li, S. K. Das, Software1670

defined networking meets information centric networking: A survey, IEEE

Access 6 (2018) 39547–39563.

76

	Introduction
	Overview of Stateless and Stateful Data Plane
	Stateless Data Plane
	Stateful Data Plane
	Stateless vs Stateful

	Existing Platforms and Applications for Stateful Data Plane
	Stateful Data Plane Platforms
	OpenState
	OPP
	FAST
	SNAP
	SDPA
	FlowBlaze

	Stateful Data Plane Compilers
	P4
	DOMINO
	XL

	Applications Based on Stateful Data Plane
	SPIDER
	Static NAT
	HULA
	HashPipe
	Dapper
	INT

	Remarks

	Basic Components of Stateful Data Plane
	State Classification
	Per-packet State
	Per-flow State
	Global State
	Discussions

	State Machines
	State Machine Abstraction
	State Machine Classification
	Remarks

	State Operations
	Extensible Match-action Table
	Control Flow

	Schedule and Optimization Technologies
	Consistency
	Intra-switch Consistency
	Inter-switch Consistency

	Migration
	Composition optimization
	Placement
	State Placement
	Logic Placement

	Remarks

	Implementation Considerations for Stateful Data Plane
	Available Implementations
	Hardware Limitations
	Compute capacity
	Memory Capacity

	Remarks

	Future Research Discussions
	Conclusions
	Acknowledgement

